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Using high-statistics data sets generated in (2+1)-flavor QCD calcu-
lations at finite temperature, we construct estimators for the radius of
convergence from an eighth-order series expansion of the pressure as well
as the number density. We show that the estimator for pressure and num-
ber density will be identical in the asymptotic limit. In the vicinity of the
pseudo-critical temperature, Tpc ≃ 156.5 MeV, we find the estimator of
the radius of convergence to be µB/T ≳ 3 for strangeness-neutral matter.
We also present results for the pole structure of the Padé approximants for
the pressure at non-zero values of the baryon chemical potential and show
that the pole structure of the [4,4] Padé is consistent with not having a
critical point at temperatures larger than 135 MeV and a baryon chemical
potential smaller than µB/T ∼ 2.5.
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1. Introduction

The Taylor expansion and analytic continuation are the two most com-
monly used techniques to understand the properties of strongly interacting
matter at non-zero values of the chemical potentials. Although both methods
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provide reliable estimates for thermodynamic observables at small chemical
potentials, they suffer from systematic effects (truncation effects, limitation
of analytic continuation ansatz, etc.) at moderate-to-large chemical poten-
tials as only few expansion coefficients are known [1]. Hence, recently, there
is a lot of effort going on in the lattice QCD community aiming at an efficient
resumation of the standard series expansions [2–5] to get reliable estimates
also at large chemical potentials. Here, we will focus on the use of Padé
approximations to resum the Taylor series to estimate the radius of con-
vergence of Taylor series of pressure in (2+1)-flavor QCD at finite chemical
potentials. A comparison of Taylor expansions and Padé resummation has
been presented recently by the HotQCD Collaboration in [6].

One of the central goals of QCD at large chemical potential is to find
evidence for the existence of the so-called critical endpoint (CEP) in the
QCD phase diagram. Phase transitions (critical points) are related to the
singularities of the free energy on the real chemical potential axis, which one
could estimate by analyzing the behavior of the expansion coefficients of
Taylor series or by determining the poles of Padé approximants for thermo-
dynamic observables obtained as derivatives of the partition function with
respect to T or the chemical potentials [7]. In the following, we will elaborate
on these ideas in the context of QCD at finite temperature and densities.
Being forced to work with a finite number of Taylor coefficients, the Padé
approximants are a good choice as one can easily distinguish real and com-
plex poles. Lattice QCD calculations at smaller-than-physical quark masses,
combined with our model-based understanding of the QCD phase diagram,
suggest that this critical point, if it exists, needs to be searched for at tem-
peratures below/around the QCD chiral critical temperature (∼ 135 MeV)
[8–10]. Thus, we extend our calculations down to temperatures of 125 MeV
and use the high statistics results for conserved charge cumulants up to 8th

order, obtained by the HotQCD Collaboration, to resum the Taylor expan-
sions of the logarithm of the QCD partition function.

In the following sections, we will show that the poles one obtains from the
diagonal [4,4] Padé approximants for the 8th-order Taylor series of pressure in
terms of baryonic chemical potential are complex at least for T ≳ 140 MeV,
i.e. the singularity closest to the origin, which will control the radius of
convergence of Taylor series, is in the complex plane. Of course, one has
to confirm in the future that this will be the case also for the higher-order
diagonal Padé approximants. This is consistent with the fact that the CEP
does not exist for T ≳ 140 MeV.
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2. Taylor expansion and Padé approximants
of isospin symmetric matter in (2+1)-flavor QCD

The Taylor expansions for the pressure of (2+1)-flavor QCD is given by

P

T 4
=

1

V T 3
lnZ(T, V, µ⃗ ) =

∞∑
i,j,k=0

χBQS
ijk

i!j! k!
µ̂i
B µ̂j

Q µ̂k
S , (1)

with µ̂X ≡ µX/T . Here, χBQS
ijk are derivatives of P/T 4 with respect to the

corresponding chemical potentials, µ⃗ = (µB, µQ, µS), evaluated at µ⃗ = 0⃗

χBQS
ijk =

1

V T 3

∂ lnZ(T, V, µ⃗ )

∂µ̂i
B ∂µ̂j

Q ∂µ̂k
S

∣∣∣∣∣
µ⃗=0

, i+ j + k even . (2)

To study strangeness neutral (nS = 0) isospin-symmteric (nQ/nB =
0.5 ⇔ µQ = 0) matter, we introduce constraints on the strangeness chemical
potentials

µ̂S(T, µB) = s1(T )µ̂B + s3(T )µ̂
3
B + s5(T )µ̂

5
B + . . . (3)

The expansion coefficients si with i = 1, 3, 5, 7 are given in [11, 12]. Sub-
stituting µS by using Eq. (3) with µQ = 0 and using Eq. (1), we obtained
the Taylor series for the µ̂B-dependent part of the pressure and the net
baryon-number density

P (T, µB)− P (T, 0)

T 4
=

∞∑
k=1

P2k(T )µ̂
2k
B ,

nB(T, µB)

T 3
=

∞∑
k=1

NB
2k−1(T )µ̂

2k−1
B ,

(4)

where NB
2k−1 =

χ̄B,2k
0

(2k−1)! and P2k = 2kN2k−1 =
χ̄B,2k
0
2k! .

The simplest estimator, rc,n, for the radius of convergence, rc = lim
n→∞

rc,n,
is obtained from the ratio of the subsequent, non-vanishing expansion coef-
ficients. We define for pressure and number density respectively

rPc,2k = |P2k−2/P2k|1/2 and rnBc,2k = |N2k−3/N2k−1|1/2 , (5)

rPc,2k/r
nB
c,2k =

√
[2k/(2k − 2)] = 1 + 1/k +O

(
k2
)
, (6)

rc = lim
k→∞

rPc,2k = lim
k→∞

rnBc,2k . (7)

In Fig. 1, we show the two highest-order subsequent expansion coeffi-
cients. For these two expansion coefficients we only used the spline inter-
polation of the data sets on Nτ = 8 lattice data for which we have about
1.5 million configurations for each temperature value.
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Fig. 1. The sixth (left) and eighth (right) order cumulants contributing to the
Taylor series of the pressure of (2+1)-flavor QCD as a function of µ̂B = µB/T versus
temperature. A comparison with the hadron resonance gas model (QMHRG2020)
[13] is also shown.

3. Searching for CEP using [4,4] Padé approximants

Since the first two expansion coefficients in Eq. (4) are strictly positive
in the temperature range T ∈ [135–175] MeV, we rescale the expansion

coefficients in the Taylor series, c2k,2 = P2k
P2

(
P2
P4

)k−1
, x̄ =

√
P4
P2

, to obtain

χB
0 (T, µ̂B)

P4

P 2
2

=

∞∑
k=1

c2k,2x̄
2k = x̄2 + x̄4 + c6,2x̄

6 + c8,2x̄
8 . (8)

The [2, 2] and [4, 4] Padé can then be written as

P [2, 2] =
x̄2

1−x̄2
, P [4, 4] =

(1− c6,2)x̄
2 + (1− 2c6,2 + c8,2) x̄

4

(1− c6,2) + (c8,2 − c6,2)x̄2 + (c26,2 − c8,2)x̄4
.

(9)
The poles of the Padés can be obtained by determining the roots of the

denominators of Eq. (9) as a function of x̄. For the case of the [2,2] Padé, one

gets x̄2 = 1, i.e. for µB,c ≡ rc,2 =

√
12χ̄B,2

0 /χ̄B,4
0 , which is the standard ratio

estimator for the radius of convergence. In the case of the [4,4] Padé, there
are four possibilities. Depending on the values of c8,2 and c6,2, one will either
find 4 complex, or 2 real plus 2 imaginary, or 4 real, or 4 imaginary poles.
Inside the triangular-shaped regions bounded by black lines, shown in Fig. 2
(left), the poles are complex. We show in Fig. 2 (left), c8,2 and c6,2 obtained
in (2+1)-flavor QCD. From that, it can be established that one obtains
4-complex poles in the temperature range of 135 MeV ≤ T ≤ 165 MeV. In
Fig. 1, our two highest expansion coefficients χ̄B,6

0 and χ̄B,8
0 become positive

at T ≃ 125 MeV, although errors still are large at lower temperatures. Hence,
within our current statistical errors, we cannot rule out a pair of real and/or
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purely imaginary poles at temperatures below T = 135 MeV. The estimator
for the radius of convergence for the complex poles can be written as

rc,4 =

√√√√12χ̄B,2
0

χ̄B,4
0

∣∣∣∣∣ 1− c6,2
c26,2 − c8,2

∣∣∣∣∣
1/4

(10)

which can be identified as the Mercer–Roberts estimator [14] as long as the
poles are complex. As seen from Fig. 2 (middle), estimates for the radius of
convergence, obtained from the diagonal Padé approximants lead to larger
values with increasing temperature. We find that µB/T ≳ [2.5 − 4] in the
temperature range of T ∼ [135–165] MeV. We estimate µB/T ≳ 3 close
to the pseudo-critical temperature Tpc ∼ 156.5 MeV. In Fig. 2 (right), we
also show the location of complex poles with a positive real part obtained
in a temperature range between T = [135 : 165] MeV. They clearly show a
tendency to move towards the real axis as the temperature decreases. As
mentioned earlier, our current statistical errors do not allow us to draw
any conclusion about the nature of the poles at temperature lower than
T ≤ 135 MeV.
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Fig. 2. c8,2 versus c6,2 on Nτ = 8 lattice in the temperature range of 125 MeV <

T < 175 MeV (left), magnitude of poles nearest to the origin obtained from the
[2,2] (squares) and [4,4] (bands) Padé approximants (middle), location of poles with
Re(µB) > 0 nearest to the origin obtained from the [4,4] Padé approximants in the
complex µ̂B-plane (right).

4. Conclusions

Using the diagonal Padé approximants of an eighth-order Taylor series
of (2+1)-flavor QCD, we estimate a radius of convergence of µB/T ≳ 3
close to the Tpc. We also show that the poles of the Padé approximants in
the temperature range of T = [135 : 165] MeV are all complex, disfavoring
the existence of a critical point at temperature larger than T ∼ 135 MeV.
Furthermore, we also argued that for T < 130 MeV the [4,4], Padé approxi-
mants can have real poles, which could signal the occurrence of a phase tran-
sition, at lower temperatures. As the decrease of the QCD pseudo-critical
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temperature with increasing baryon chemical potentials is small, such low
temperatures can only be reached for high baryon densities µB/T ≳ 2.5 MeV,
i.e. at beam energies below the lowest bean energy used at RHIC in collider
mode,

√
s ≲ 7.7 GeV.
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