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INTERACTIONS ENCODED IN PHASE SHIFT∗
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I describe how interactions can be included via a model phase shift.
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1. Introduction

The S-matrix formulation of statistical mechanics [1, 2] offers a robust
approach to determine the bulk properties of the medium based on the in-
teractions among constituents. The connection is established by the density
of states (DoS) [3, 4], which can be expressed in terms of the S-matrix via
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where Q(E) is the scattering phase shift. The change in thermal pressure
due to interaction is given by [3, 5]
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While I focus here on the non-relativistic case, analogous equations can be
written for the relativistic case.
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2. Resonant scattering

Consider first the case in which the interaction is dominated by a single
resonance of mass mres and width γ. The resonant phase shift can be writ-
ten as

Q(E) = tan−1 γ(E)/2

mres − E
. (3)

The effective spectral function B assumes the standard Breit–Wigner form
upon neglecting the energy dependence of the numerator γ(E) → γBW:
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≈ γBW
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= −2 Im
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E −mres + i γBW/2
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The partial pressure (2) becomes that of a free gas of resonances: treated as
if they were a fundamental degree of freedom. In addition, when the width is
narrow the pointlike gas result [6] is recovered as Bres(E) → 2πδ(E−mres).

3. Non-resonant scattering

On the other extreme, I consider a structureless, non-resonant scattering.
Here, one obtains [3]

2Q(E) ≈ 2 q(E) f ≈ −ϕTnr , (5)

where q(E) =
√
2mredE is the relative momentum in the CoM frame, f is

the forward scattering amplitude
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eiQ

q
sinQ ; (6)

and ϕ is the (non-relativistic) phase space
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This correctly identifies the non-relativistic T-matrix, Tnr, as

Tnr ≈ − 4πf

2mred
. (8)

Note that we consider only the real part in this approximation. The thermal
pressure in Eq. (2) reads
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The same result can be obtained when an in-medium mass shift of species A,
due to their interactions with species B, is imposed
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where the shift in mass is given by [7–12]
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The generalization to quantum statistics is straightforward. This demon-
strates how “in-medium” effects can be included via “vacuum” phase shifts.
After all, the Hamiltonian should contain all the necessary information [13].
Note that when the relevant experimental results are available to quantify
the DoS, the thermal observables computed become model independent.
This provides a useful framework to analyze the observables in heavy-ion
collision experiments, such as hadron yields and the momentum distribu-
tions of light hadrons [14–21].

4. Going further

There are many other aspects in which the S-matrix phenomenology can
improve a thermal model. For example, the roots in the complex plane
of S-matrix encode details of non-resonant interactions. Their effects on
the thermal trace are as important as those from the poles. Note that the
empirical partial-wave amplitudes cannot be reconstructed from a list of
resonances alone.

Another aspects is the ability to handle coupled-channel effects, which
would be essential to reliably describe higher resonances. As a rule, mul-
tiple channels open up, and many of these states do not result in a strong
enhancement in the phase shift and thus the partial pressure would not be
well approximated by the free gas [22].
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Theoretically, it remains challenging to understand the S-matrix ele-
ments in terms of quarks and gluons degrees of freedom: presumably, they
are forbidden in the open channels, and at low temperatures, the S-matrix
scheme should yield a gas of pions. Realizing this, in the S-matrix approach
could yield novel insights into describing the thermal properties of interact-
ing hadrons and, eventually, the deconfinement phase transition in QCD.
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