INTERACTIONS ENCODED IN PHASE SHIFT*

Pok Man Lo
University of Wrocław, 50-204 Wrocław, Poland
Received 13 September 2022, accepted 22 September 2022, published online 14 December 2022

I describe how interactions can be included via a model phase shift.

DOI:10.5506/APhysPolBSupp.16.1-A78

1. Introduction

The S-matrix formulation of statistical mechanics [1, 2] offers a robust approach to determine the bulk properties of the medium based on the interactions among constituents. The connection is established by the density of states (DoS) [3, 4], which can be expressed in terms of the S-matrix via

$$
\begin{align*}
B(E) & =\frac{1}{2} \operatorname{Im} \operatorname{Tr}\left[S^{-1} \frac{\mathrm{~d}}{\mathrm{~d} E} S-\left(\frac{\mathrm{d}}{\mathrm{~d} E} S^{-1}\right) S\right] \\
& =\frac{\mathrm{d}}{\mathrm{~d} E} \operatorname{Im} \ln \operatorname{det} S(E) \\
& =2 \frac{\partial}{\partial E} \mathcal{Q}(E) \tag{1}
\end{align*}
$$

where $\mathcal{Q}(E)$ is the scattering phase shift. The change in thermal pressure due to interaction is given by $[3,5]$

$$
\begin{equation*}
\Delta P \approx T \int \frac{\mathrm{~d}^{3} P}{(2 \pi)^{3}} \frac{\mathrm{~d} E^{\prime}}{(2 \pi)} \mathrm{e}^{-\beta\left(m_{\mathrm{tot}}+\frac{P^{2}}{2 m_{\mathrm{tot}}}+E^{\prime}\right)} B\left(E^{\prime}\right) \tag{2}
\end{equation*}
$$

While I focus here on the non-relativistic case, analogous equations can be written for the relativistic case.

[^0]
2. Resonant scattering

Consider first the case in which the interaction is dominated by a single resonance of mass $m_{\text {res }}$ and width γ. The resonant phase shift can be written as

$$
\begin{equation*}
\mathcal{Q}(E)=\tan ^{-1} \frac{\gamma(E) / 2}{m_{\mathrm{res}}-E} \tag{3}
\end{equation*}
$$

The effective spectral function B assumes the standard Breit-Wigner form upon neglecting the energy dependence of the numerator $\gamma(E) \rightarrow \gamma_{\mathrm{BW}}$:

$$
\begin{align*}
B_{\mathrm{res}}(E) & =2 \frac{\mathrm{~d}}{\mathrm{~d} E} \mathcal{Q}_{\mathrm{res}}(E) \\
& \approx \frac{\gamma_{\mathrm{BW}}}{\left(E-m_{\mathrm{res}}\right)^{2}+\gamma_{\mathrm{BW}}^{2} / 4} \\
& =-2 \operatorname{Im} \frac{1}{E-m_{\mathrm{res}}+i \gamma_{\mathrm{BW}} / 2} \tag{4}
\end{align*}
$$

The partial pressure (2) becomes that of a free gas of resonances: treated as if they were a fundamental degree of freedom. In addition, when the width is narrow the pointlike gas result [6] is recovered as $B_{\mathrm{res}}(E) \rightarrow 2 \pi \delta\left(E-m_{\mathrm{res}}\right)$.

3. Non-resonant scattering

On the other extreme, I consider a structureless, non-resonant scattering. Here, one obtains [3]

$$
\begin{equation*}
2 \mathcal{Q}(E) \approx 2 q(E) f \approx-\phi T_{\mathrm{nr}} \tag{5}
\end{equation*}
$$

where $q(E)=\sqrt{2 m_{\text {red }} E}$ is the relative momentum in the CoM frame, f is the forward scattering amplitude

$$
\begin{equation*}
f(E)=\frac{\mathrm{e}^{i \mathcal{Q}}}{q} \sin \mathcal{Q} \tag{6}
\end{equation*}
$$

and ϕ is the (non-relativistic) phase space

$$
\begin{equation*}
\phi(E)=\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} 2 \pi \delta\left(E-\frac{q^{2}}{2 m_{\mathrm{red}}}\right)=\frac{m_{\mathrm{red}} q(E)}{\pi} \tag{7}
\end{equation*}
$$

This correctly identifies the non-relativistic T-matrix, T_{nr}, as

$$
\begin{equation*}
T_{\mathrm{nr}} \approx-\frac{4 \pi f}{2 m_{\mathrm{red}}} \tag{8}
\end{equation*}
$$

Note that we consider only the real part in this approximation. The thermal pressure in Eq. (2) reads

$$
\begin{align*}
\Delta P & \approx \int \frac{\mathrm{~d}^{3} P}{(2 \pi)^{3}} \frac{\mathrm{~d} E^{\prime}}{(2 \pi)} \mathrm{e}^{-\beta\left(m_{\mathrm{tot}}+\frac{P^{2}}{2 m_{\mathrm{tot}}}+E^{\prime}\right)} 2 \mathcal{Q}\left(E^{\prime}\right) \\
& =\int \frac{\mathrm{d}^{3} P}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \mathrm{e}^{-\beta\left(m_{\mathrm{tot}}+\frac{P^{2}}{2 m_{\mathrm{tot}}}+\frac{q^{2}}{2 m_{\mathrm{red}}}\right)}\left(-T_{\mathrm{nr}}\right) \\
& \approx N_{\mathrm{th}}^{A} N_{\mathrm{th}}^{B} \times\left(-T_{\mathrm{nr}}\right) \tag{9}
\end{align*}
$$

The same result can be obtained when an in-medium mass shift of species A, due to their interactions with species B, is imposed

$$
\begin{align*}
\Delta P & \approx T \int \frac{\mathrm{~d}^{3} p_{A}}{(2 \pi)^{3}} \mathrm{e}^{-\beta\left(m_{A}+\frac{p_{A}^{2}}{2 m_{A}}\right)}\left(-\beta \Delta m_{A}\right) \\
& =-\Delta m_{A} N_{\mathrm{th}}^{A}=N_{\mathrm{th}}^{A} N_{\mathrm{th}}^{B} \times \frac{4 \pi f}{2 m_{\mathrm{red}}} \tag{10}
\end{align*}
$$

where the shift in mass is given by [7-12]

$$
\begin{equation*}
\Delta m_{A} \approx \int \frac{\mathrm{~d}^{3} k_{B}}{(2 \pi)^{3}} \mathrm{e}^{-\beta\left(m_{B}+\frac{k_{B}^{2}}{2 m_{B}}\right)} T_{\mathrm{nr}} \tag{11}
\end{equation*}
$$

The generalization to quantum statistics is straightforward. This demonstrates how "in-medium" effects can be included via "vacuum" phase shifts. After all, the Hamiltonian should contain all the necessary information [13]. Note that when the relevant experimental results are available to quantify the DoS, the thermal observables computed become model independent. This provides a useful framework to analyze the observables in heavy-ion collision experiments, such as hadron yields and the momentum distributions of light hadrons [14-21].

4. Going further

There are many other aspects in which the S-matrix phenomenology can improve a thermal model. For example, the roots in the complex plane of S-matrix encode details of non-resonant interactions. Their effects on the thermal trace are as important as those from the poles. Note that the empirical partial-wave amplitudes cannot be reconstructed from a list of resonances alone.

Another aspects is the ability to handle coupled-channel effects, which would be essential to reliably describe higher resonances. As a rule, multiple channels open up, and many of these states do not result in a strong enhancement in the phase shift and thus the partial pressure would not be well approximated by the free gas [22].

Theoretically, it remains challenging to understand the S-matrix elements in terms of quarks and gluons degrees of freedom: presumably, they are forbidden in the open channels, and at low temperatures, the S-matrix scheme should yield a gas of pions. Realizing this, in the S-matrix approach could yield novel insights into describing the thermal properties of interacting hadrons and, eventually, the deconfinement phase transition in QCD.

I thank the organizer for the kind invitation to the interesting meeting. I am also grateful to Johanna Stachel, Peter Braun-Munzinger, Anton Andronic, and Krzysztof Redlich for many inspiring discussions. This work was supported by the National Science Center, Poland (NCN) under Opus grant No. 2018/31/B/ST2/01663.

REFERENCES

[1] R. Dashen, S.-K. Ma, H.J. Bernstein, Phys. Rev. 187, 345 (1969).
[2] R. Venugopalan, M. Prakash, Nucl. Phys. A 546, 718 (1992).
[3] P.M. Lo, Eur. Phys. J. C 77, 533 (2017).
[4] P.M. Lo, Phys. Rev. D 102, 034038 (2020).
[5] P.M. Lo, F. Giacosa, Eur. Phys. J. C 79, (2019).
[6] R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965).
[7] A. Schenk, Nucl. Phys. B 363, 97 (1991).
[8] E. Shuryak, Nucl. Phys. A 538, 139 (1992).
[9] M. Kacir, I. Zahed, Phys. Rev. D 54, 5536 (1996).
[10] N. Ashida, H. Nakkagawa, A. Niegawa, H. Yokota, Ann. Phys. 215, 315 (1992); Erratum ibid. 230, 161 (1994).
[11] S. Jeon, P.J. Ellis, Phys. Rev. D 58, 045013 (1998).
[12] V.L. Eletsky, M. Belkacem, P.J. Ellis, J.I. Kapusta, Phys. Rev. C 64, 035202 (2001).
[13] A. LeClair, J. Phys. A 40, 9655 (2007).
[14] W. Broniowski, F. Giacosa, V. Begun, Phys. Rev. C 92, 034905 (2015).
[15] W. Broniowski, W. Florkowski, B. Hiller, Phys. Rev. C 68, (2003).
[16] W. Weinhold, B.L. Friman, W. Noerenberg, Acta Phys. Pol. B 27, 3249 (1996).
[17] W. Weinhold, B. Friman, W. Norenberg, Phys. Lett. B 433, 236 (1998).
[18] B. Friman et al., Phys. Rev. D 92, 074003 (2015).
[19] ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013).
[20] J. Sollfrank, P. Koch, U.W. Heinz, Phys. Lett. B 252, 256 (1990).
[21] P.M. Lo, Phys. Rev. C 97, 035210 (2018).
[22] A. Andronic et al., Nucl. Phys. A 1010, 122176 (2021).

[^0]: * Presented at the $29^{\text {th }}$ International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2022, Kraków, Poland, 4-10 April, 2022.

