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We study the initial-state momentum correlations and event-by-event
geometry in p+Pb collisions at

√
s = 5.02 TeV by following the approach of

extending the IP-Glasma model to 3D using the JIMWLK rapidity evolu-
tion. On examining the non-trivial rapidity dependence of the observables,
we find that the geometry is correlated over large rapidity intervals, while
the initial-state momentum correlations have a relatively short range in
rapidity. Based on our results, we discuss implications for the relevance
of both effects in explaining the origin of collective phenomena in small
systems.
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1. Introduction

Experimental evidence for collectivity in high multiplicity p+p/A [1] col-
lisions has lead to an increasing interest in understanding the origin of these
long-range azimuthal correlations in small systems. The general features of
these correlations are similar to those observed in heavy-ion collisions, where
these structures are interpreted in terms of the system’s response to initial
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geometry [2]. For small systems, event geometry [3] and initial-state corre-
lations [4] have been invoked as possible explanations of observed long-range
rapidity correlations. In these proceedings, the relative contribution of both
these mechanisms has been analyzed as a function of rapidity for pPb colli-
sion at 5.02 TeV by using the 3+1D IP-Glasma model that incorporates the
longitudinal structure by including the JIMWLK evolution of the incoming
nuclear distributions. The details of our work can be found in [5].

2. 3D IP-Glasma model and event generation

We follow the description [6] within the Color Glass Condensate (CGC)
framework, where the expectation value of an observable O(yobs) at any
rapidity yobs is calculated in terms of the high-energy factorization of the
projectile (p) and the target (Pb) [7] as

O(yobs) = Ocl

(
V p
x⊥

(+yobs), V
Pb
x⊥

(−yobs)
)
, (1)

where V
p/Pb
x⊥ denote the light-like Wilson line at the position x⊥.

We generate a set of 4096 events from a set of proton and lead Wilson
line configurations that are evolved to all rapidities of interest using the
JIMWLK evolution and collided at different impact parameters. For each
event, we run a series of independent 2 + 1 D classical Yang–Mills (CYM)
simulations at intervals of ∆y = 0.4 in the yobs ∈ [−2.4,+2.4] range to
get the rapidity dependence of observables according to the factorization
scheme.

The centrality selection is based on the gluon multiplicity at mid-rapidity.
We will present results for two different sets of IR regulator used in the
IP-Glasma model (m̃) and the JIMWLK equations (m), namely m = m̃ =
0.2 GeV and m = m̃ = 0.8 GeV.

3. Results

We first examine the longitudinal structure of the event geometry and
the initial-state momentum anisotropy by following the standard procedure
in which the event geometry is characterized by eccentricities

εn(y) =

∫
d2r⊥T

ττ (y, r⊥) |r⊥|neinϕr⊥∫
d2r⊥T ττ (y, r⊥) |r⊥|n

, (2)

and the momentum anisotropy is given by the azimuthal anisotropy of the
produced gluons

vg2(y) =

∫
d2k⊥|k⊥| dNg

dyd2k⊥
(y)e

2iϕk⊥∫
d2k⊥|k⊥| dN

dyd2k⊥
(y)

. (3)
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Our results for the rapidity dependence of ε2(y) (left) and ε3(y) (middle),
and vg2 (right) are compactly summarised in Fig. 1. We observe that ε2
decreases, while the triangularity ε3 increases with decreasing multiplicity.
The eccentricity ε2 also decreases with increasing rapidity, while ε3 shows
a weaker rapidity dependence except for the most central and the most
peripheral collisions, where it increases toward the Pb-going direction. On
the other hand, vg2 is largely independent of rapidity in all the centrality bins
and grows monotonically with decreasing multiplicity.
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Fig. 1. The rapidity dependence of
√
⟨|ε2(y)|2⟩ (left),

√
⟨|ε3(y)|2⟩ (middle), and√

⟨|vg2(y)|2⟩ (right) for different centrality classes for m = m̃ = 0.8 GeV.

We now analyze the rapidity decorrelation of geometry and initial-state
momentum correlations by computing the normalized rapidity correlation
function CN

O(y1, y2) = ⟨Re(O(y1)O∗(y2))⟩/
√
⟨|O(y1)|2⟩⟨|O(y2)|2⟩, where O

is any of the previously defined observables. In Fig. 2, we show CN
ε2(∆y) and

CN
v2(∆y) as functions of the rapidity difference ∆y for m = m̃ = 0.2 GeV,

which are obtained as

CN
O(∆y) =

1

2ymax −∆y

+ymax−|∆y|/2∫
−ymax+|∆y|/2

dY CN
O

(
Y +

∆y

2
, Y − ∆y

2

)
.

The geometry decorrelates faster towards more peripheral events because
it is easier to change the geometry of dilute events. The decorrelation of
the initial-state momentum anisotropy shows the opposite centrality depen-
dence, with the most peripheral collisions showing a slower decorrelation.
Comparing the results in the two panels, we see that the decorrelation of
the initial-state momentum anisotropy in CN

v2(∆y) is much faster than the
decorrelation of the event geometry in CN

ε2(∆y).
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Fig. 2. Normalized correlation function CN
O(∆y) of eccentricity ε2 (left) and initial

state anisotropy v2 (right) for different centrality classes using m = m̃ = 0.2 GeV.

Finally, we study estimators for the correlation of mean transverse mo-
mentum [pT] and elliptical anisotropy V2, which is defined as [8]

ρ̂
(
V 2
2 , [pT]

)
=

〈
δ̂V 2

2 δ̂ [pT]
〉

√〈(
δ̂V 2

2

)2
〉〈(

δ̂ [pT]
)2

〉 . (4)

The event-by-event fluctuations of an observable O at fixed multiplicity are
defined as δ̂O ≡ δO − (⟨δOδN⟩/σ2

N )δN , where δO = O − ⟨O⟩, N is the
multiplicity and σN the variance of N in a given centrality bin [9]. Since
we are considering the initial-state quantities, we compute ρ̂ by replacing V2

with the initial-state eccentricity ε2 (or the initial momentum anisotropy v2)
and [pT] by the average entropy density [s] = [e3/4], where e is the energy
density, approximated as T ττ .

Our results for ρ̂est(ε
2
2, [s]) (left) and ρ̂est(v

2
2, [s]) (right) are summarized

in Fig. 3, where we present the measurement for two different bin selection
methods. One uses all quantities at mid-rapidity y = 0 and the other uses
three different rapidity bins (ABC regions) for the different components of ρ̂.
We find that for the larger m = m̃, the ρ̂est(ε

2
2, [s]) is always negative, as can

be expected from geometric considerations [10]. For m = m̃ = 0.2 GeV, we
even find positive values for most central and most peripheral events which
is in line with previous work [11], where the geometric ρ̂ correlator turned
positive when increasing the system size. We also notice that ρ̂est(ε

2
2, [s])

is independent of the choice of the rapidity bins which is related to the
weak decorrelation of the geometry observed. For ρ̂est(v

2
2, [s]), we observe a

positive correlation when quantities in estimators are taken at mid-rapidity,
which is again in line with previous work [10]. However, for the ABC region,
ρ̂est(v

2
2, [s]) is consistent with zero due to the rapid decorrelation of v2 with

rapidity.
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Fig. 3. The estimators for geometry ρ̂est(ε
2
2, [s]) (left) and initial-state momentum

anisotropy ρ̂est(ϵ
2
p, [s]) (right) as a function of centrality for two different values of

(m = m̃). The ρ̂ for ABC is obtained for different rapidity regions: region A with
−2.4 < y < −0.8, region B with |y| < 0.8, and region C with 0.8 < y < 2.4.

4. Conclusion and outlook

We have presented results for rapidity-dependent quantities in p+Pb col-
lisions, computed within the CGC framework. We computed the unequal ra-
pidity correlations of both geometric and initial-state momentum anisotropy,
quantified by ε2 and v2, respectively, and observed that the geometry decor-
relates much slower as a function of the rapidity difference, compared to the
initial-momentum anisotropy. Beyond phenomenological applications of the
3-D IP Glasma model to collective flow in small and large systems, further
theoretical progress towards the construction of a fully 3D Wilson line con-
figuration followed by 3+1D Yang–Mills evolution, as explored in [12, 13],
will be desirable in the future.
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