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In recent years, there has been a significant effort to extract the tempe-
rature-dependent shear (η/s) and bulk (ζ/s) viscosity over entropy ratios
of the quark–gluon plasma from a global comparison of heavy-ion data with
results of hydrodynamic simulations. However, anisotropic flow, which is
arguably the most sensitive probe of viscosity, is only sensitive to an effec-
tive viscosity over entropy ratio, which is obtained by taking a weighted
average over the temperature and summing the contributions of shear and
bulk. We estimate this effective viscosity using existing first-principles cal-
culations, which give 0.17 < (η/s)eff < 0.21, and (ζ/s)eff < 0.08, implying
that the damping of anisotropic flow at the LHC is mostly due to shear
viscosity. The values extracted from global data analyses are compatible
with these theory predictions.
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1. Introduction

The quark–gluon plasma produced in ultrarelativistic heavy-ion colli-
sions at RHIC and the LHC is the most strongly-interacting medium ever
produced in the laboratory, and strong interactions typically imply a small
value of the shear viscosity (η) to entropy density (s) ratio η/s [1]. Calcu-
lating the transport coefficients of QCD is notoriously difficult. However, it
is hoped that they can be constrained using heavy-ion experimental data,
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through a comparison with results of hydrodynamic simulations, which use
transport coefficients as input. One expects η/s to depend on temperature,
with a minimum near a critical point or a rapid crossover [2], and such a
temperature dependence is included in hydrodynamic calculations [3]. The
potential importance of bulk viscosity, ζ, has also been emphasized [4, 5].
Unlike shear viscosity, it is expected to increase near a critical point [6].

It may seem natural to try and extract η/s(T ) and ζ/s(T ) from a global
comparison of experimental data with results of hydrodynamic simulations,
and several attempts have been made in this direction [7–9], but error bars
are still rather large. An alternative approach is to consider observables one
by one and characterize their dependence on transport coefficients. It is well
known that this dependence is the strongest for anisotropic flow coefficients,
in particular elliptic flow, v2, and triangular flow, v3. We have recently shown
through detailed hydrodynamic simulations [10] that each of these Fourier
harmonics depends on η/s(T ) and ζ/s(T ) only through a single quantity,
which we refer to as an effective viscosity. The effective viscosity only de-
pends on the collision energy, not on the system size or collision centrality.
Its definition is recalled in Sec. 2. Thus, the sensitivity of anisotropic flow at
the LHC to transport coefficients is encapsulated in two effective viscosities,
one for v2, one for v3. In Sec. 3, we evaluate these effective viscosities from
first-principles QCD calculations, and from Bayesian analyses of heavy-ion
data.

2. Viscous damping of vn in relativistic hydrodynamics

Relativistic hydrodynamics describes the evolution of an interacting sys-
tem over large space-time scales. It is usually formulated as an expansion [11]
in λ/R, where λ is the mean free path or an equivalent microscopic scale,
and R is the large scale, here the nuclear radius. Ideal hydrodynamics is
the leading term in the expansion, while shear and bulk viscosities are the
coefficients of the first-order correction, of relative order λ/R. The validity
of hydrodynamics itself implies that the first-order correction to an arbitrary
observable O is small. We evaluate its magnitude in the following way. We
solve ideal and viscous hydrodynamics with the exact same initial condi-
tions, up to the overall normalization of the entropy density, which we fix in
such a way that the final particle multiplicity is identical for both calcula-
tions. The dependence of O on η and ζ can be expanded to first order, and
the most general expression is

O(viscous) = O(ideal)

(
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where the weights w
(η)
O (T ) and w

(ζ)
O (T ) quantify the sensitivity of the ob-

servable O to shear and bulk viscosities at temperature T . The integral
runs over the range of temperatures spanned by the hydrodynamic calcula-
tion. The lower bound is the freeze-out temperature Tf at which the fluid
is converted into particles. The evolution of the fluid for T > Tf is fully
determined by the relativistic Navier–Stokes equations. On the other hand,
how the fluid is converted into particles at freeze-out depends on the details
of microscopic interactions [12]. We write the weight wη,ζ

O (T ) as the sum of
a smooth function for T > Tf , and a discrete contribution proportional to
δ(T − Tf), corresponding to the viscous correction at freeze-out. We expect
that most, if not all, the model dependence of our calculation lies in the
discrete part.

We apply this approach to anisotropic flow. The lower panels of Fig. 1
display the weights corresponding to elliptic flow, v2, and triangular flow, v3,
averaged over pT and over the pseudorapidity range |η| < 0.5, for Pb+Pb
collisions at

√
sNN = 5.02 TeV in the 0–5% centrality window [10]. They

are negative for most temperatures, implying a viscous suppression of vn.
The shaded boxes represent the viscous correction at freeze-out. Their area
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Fig. 1. Top panels: Shear (left) and bulk (right) viscosity over entropy ratios versus
temperature. Bands correspond to lattice QCD [13, 14] or FRG calculations [15],
where we set Tc = 156 MeV [16]. Lines correspond to global analyses of heavy-
ion data by the Duke group [7] and the JETSCAPE Collaboration [9]. The latter
includes three different prescriptions for the emission of particles at freeze-out,
referred to as Grad, Chapman–Enskog (CE), and Pratt–Torrieri–Bernhard (PTB).
Bottom panels: Values of the weights entering Eq. (1) for v2 and v3. The shaded
boxes represent the magnitude of the discrete part ∝ δ(T − Tf), corresponding to
the viscous correction at freeze-out.
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is much smaller than the area under the curve, which implies that the deter-
mination of the viscous suppression is robust. [Note that this is no longer
the case at RHIC energies [10].] The robustness is due to the fact that we
integrate vn over transverse momentum. Differential observables [8] are by
construction more sensitive to the freeze-out procedure.

We define the effective shear viscosity as the average over the tempera-
ture with the corresponding weight

(η
s

)
n,eff

=
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Tf

(η/s)(T )w
(η)
n (T )dT∫∞

Tf
w

(η)
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, (2)

and the effective bulk viscosity (ζ/s)n,eff is defined by the same equation
where one replaces w

(η)
n (T ) with w

(ζ)
n (T ). Note that there is one effective

viscosity for each observable, hence the subscript n.
With these definitions, Eq. (1) gives, for v2 and v3,

v2(viscous) = v2(ideal)
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where the numerical coefficients in front of the effective viscosities are the
denominators in Eq. (2). Note that the viscous suppression is larger by a
factor ∼ 2 for v3 than for v2. The coefficients in Eq. (3) are almost identical
for shear and bulk, which means that vn only depends on the total effective
viscosity, defined as the sum of shear and bulk effective viscosities.

3. Evaluating effective viscosities

The shear and bulk viscosities of QCD have been calculated with reason-
able accuracy at low temperature [17] and at high temperature [18, 19]. In
order to evaluate the effective viscosities, however, we need to integrate over
all temperatures, the important range being 150 ≲ T ≲ 350 MeV where
the weights w

(η,ζ)
n (T ) are the largest. Few calculations cover this whole

range. For the shear viscosity, we use results using Functional Renormal-
ization Group (FRG) methods [15], where quarks are included and results
from lattice QCD [13], where quarks are not included but their effect is
estimated. For bulk viscosity, we use lattice QCD calculations [14] where
quarks are not included. These calculations are displayed as shaded bands
in the upper panels of Fig. 1. The lines in this figure display viscosities
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inferred from global analyses of heavy-ion data by the Duke group [7] and
the JETSCAPE Collaboration [9]. We only show the central values, not the
error bands, but we use the error bands to evaluate the errors on effective
viscosities (see Fig. 2). The differences between the lines labeled Grad, CE,
and PTB illustrate the sensitivity of hydrodynamic calculations to theoret-
ical uncertainties in modeling the freeze-out stage.
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Fig. 2. Effective bulk (open symbols) and shear (closed symbols) viscosities, ob-
tained by multiplying the temperature-dependent viscosities (upper panel of Fig. 1)
with the weights (lower panel of Fig. 1) and integrating over the temperature.

We then evaluate the effective viscosities defined by Eq. (2), which are
displayed in Fig. 2. They are almost identical for v2 and for v3, which reflects
the fact that the weights defining these viscosities are very similar for both
observables, up to an overall normalization (see lower panels of Fig. 1). The
effective viscosities inferred from the Bayesian analysis of experimental data
by the JETSCAPE Collaboration depend little on the ansatz used for the
particlization of the fluid (Grad, CE, or PTB). This illustrates our point
that effective viscosities encapsulate the information that can be inferred
from vn data. Results from the earlier Duke analysis seem to have smaller
errors, but they are likely to be underestimated [9]. One sees that Bayesian
analyses give in general (ζ/s)eff < (η/s)eff , although with large error bars.
Note that v2 and v3 only depend on the sum of bulk and shear effective
viscosities, hence they do not allow to disentangle shear from bulk. It would
be useful to extend our approach to other observables, such as the mean
transverse momentum ⟨pT⟩, for which the effects of shear and bulk viscosity
go in opposite directions [20].
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The first-principles calculation of [15] gives a narrow range for the ef-
fective shear viscosity, 0.17 < (η/s)eff < 0.21, which is compatible with the
lattice calculation, and with the JETSCAPE result within error bars. It is in-
teresting to note that the lattice calculation also predicts (ζ/s)eff < (η/s)eff ,
in line with general expectations that bulk viscosity should be negligible
compared to shear viscosity [21].
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