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Using the two-particle irreducible (2PI) Φ-functional formalism for self-
consistent approximations of a linear-σ model for quarks and mesons in and
out of equilibrium, the build-up of fluctuations of the net-baryon number
during the time evolution of an expanding fireball is studied within a kinetic
theory for the order parameter (σ field) and quark distribution functions.
Initializing the system with purely Gaussian fluctuations, a fourth-order
cumulant is temporarily built up due to the evolution of the σ field. This
is counterbalanced, however, by the dissipative evolution due to collisions
between quarks, anti-quarks, mesons, and the mean field, depending on the
speed of the fireball expansion.
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1. Introduction

One important motivation for ultra-relativistic heavy-ion experiments, as
conducted, e.g., with the Large Hadron Collider at CERN, the Relativistic
Heavy Ion Collider (RHIC) at BNL, and in the future at the Facility for An-
tiproton and Ion Research (FAIR) is the understanding of the phase diagram
of strongly interacting matter under extreme conditions of temperature and
density. For small baryo-chemical potentials, µB, lattice-QCD calculations
[1, 2] show that the transition between a quark–gluon plasma and a hadron-
resonance gas as well as the chiral transition is a smooth crossover at a tran-
sition temperature Tc ≃ 155 MeV. Based on effective models such as the
Nambu–Jona-Lasinio model, quark–meson models with constituent quarks
[3–6], and their Polyakov-loop extended versions [7–10], at larger µB, one
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expects a 1st-order transition line ending in a critical point with a 2nd-order
transition [11–14]. The main challenge is that this phase structure must be
reconstructed from the observables, which reflect the state of this medium
at the end of the fireball evolution (thermal freeze-out), which lasts only for
a very short time at the order of some 10 fm/c ≃ 10−23 s. A challenging
theoretical question therefore is whether “grand-canonical” higher-order cu-
mulants of the net-baryon density can develop and survive the rapid time
evolution of the finite-size fireball, expected to occur when the medium is
undergoing a 1st- or especially a 2nd-order phase transition, and whether
corresponding quantitative signatures of a possible critical point can be ob-
served.

In this contribution, we study this, employing a set of coupled equations
for the quarks, anti-quarks, and mesons as well as the order parameter, σ,
of the chiral symmetry within a linear quark–meson σ model, derived from
the two-particle irreducible functional (Φ functional) formalism [15].

2. The kinetic equations

We start from an O(4) linear-σ model for σ-mesons, pions, and u- and
d-quarks

L =
∑
i=1

ψ̄i [i∂/− g (σ + iγ5π⃗ · τ⃗ )]ψi

+
1

2
(∂µσ∂

µσ + ∂µπ⃗ ∂
µπ⃗ )− λ

4

(
σ2 + π⃗2 − ν2

)2
+ fπm

2
πσ + U0 , (1)

where λ = 20, fπ = 93 MeV, mπ = 138 MeV, ν2 = f2π − m2
π/λ, and

U0 = m4
π/(4λ)−fπ2mπ2 are chosen to lead to the right pion phenomenology

in the vacuum. The quark–meson-coupling constant g is varied in the range
between 2–5, leading to cross-over as well as 1st- and 2nd-order chiral phase
transitions at finite T and µB.

For the kinetic equations to describe both the equilibrium state as well
as the off-equilibrium kinetic evolution of this model, we use the 2PI Φ-
derivable approximation, defined in terms of the corresponding Feynman
diagrams in Fig. 1. Solving the corresponding self-consistent equations for
the propagators and the mean σ field in thermal equilibrium indeed leads to
a phase diagram with a cross-over transition at lower µB and a first-order
transition line ending in a critical point at (T, µB) = (108, 157) MeV (for a
quark–meson coupling, g = 3.3).

For the derivation of coupled kinetic equations of motion for the mean
σ field and the generalized Boltzmann equations for the quark- and meson-
phase-space-distribution functions, the diagrams are evaluated within the
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Fig. 1. Included 2PI part of the effective action with 1st line: Hartree diagrams,
2nd line: basketball diagrams, 3rd line: sunset diagrams, where solid lines stand
for the σ propagator, dashed and pointed lines for the pion propagators, and solid
lines with arrows for the fermion propagator. The circle with a cross represents a
σ mean field.

Schwinger–Keldysh real-time formalism, leading to corresponding Kadanoff–
Baym equations. Then a first-order gradient-expansion approximation to the
Wigner transforms of Green’s functions as well as an “on-shell approxima-
tion” with self-consistent dispersion relations has been applied. This results
in a non-Markovian dissipative equation for the mean field, σ, and a Boltz-
mann equation with a collision integral including the scattering processes
depicted in Fig. 2.

3. Simulation of a heavy-ion collision

To simulate the formation of higher-order cumulants of net-baryon-
density fluctuations in momentum bins, we describe the fireball of strongly
interacting quark–meson matter by an expanding homogeneous and isotropic
Friedmann–Lemaître–Robertson–Walker metric, ds2 = dt2 − a2(t)(dx21 +
dx22+dx23). This only leads to a modification in the drift terms of the mean-
field and kinetic equations. For the mean field, the “Hubble expansion” adds
an additional dissipation term, 3H∂tσ, with the “Hubble constant” H = ȧ/a,
as well as an additional term of the form of −Hp∂pf(t, p) in the drift terms
for the particle phase-space distribution. Note that due to the assumed
spatial homogeneity and isotropy, the fs only depend on t and p = |p⃗ |.

To initialize the fireball, a spherically symmetric bubble of radius R0 =
5 fm is considered, which then is expanding according to the above defined
FLRW expansion with a = vt. The medium within this bubble is initialized
in thermal equilibrium with a temperature T0 and baryon chemical potential
µB0. Then the initial net-quark number is Monte-Carlo sampled correspond-
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Fig. 2. The scattering processes in the collision integrals of the kinetic equation.
A full σ-line indicates a mean-field contribution, while a full ϕ-line describes a
scattering process involving a σ meson.

ing to a Gaussian distribution with the mean determined by the thermal
initial state and a standard deviation of σq,net = ⟨Nq,net⟩/10. To mimic
the expected fluctuations in a heavy-ion collision within a given “centrality
bin”, we keep the parameters R0 and T0 fixed and adjust µq such that the
fireball contains the net-quark number Nq,net specified by the Monte-Carlo
sampling.

With these initial conditions, the coupled mean-field and kinetic integro-
differential equations of motion are solved numerically on a momentum grid.
It has been checked that the total net-quark number is conserved within a
few percent numerical accuracy.

In Fig. 3, we show the results for the cumulant ratio, R4,2 = κ4/κ2,
for initial conditions adjusted such that the system undergoes cross-over,
second-order, and first-order transition, respectively. The fluctuations are
plotted in different momentum intervals and for different expansion veloci-
ties, v, as a function of vt. I turns out that the most pronounced fluctuations
occur at the critical time scales τmσ ,min (dynamical minimum of the σ mass)
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and τσ→qq̄ (qq̄-pair production from σ decay). The fluctuations become
largest for the smallest expansion velocity of v = 0.05c, corresponding to
a quasi-adiabatic expansion, where the system stays for the longest time
close to the critical region. However, in relativistic heavy-ion collisions this
intermediate build-up of fluctuations related with the critical region of the
phase diagram cannot be observed but only those surviving until the ther-
mal freeze-out, which corresponds in our model to vt ≥ 6 fm and a fireball
radius of R ≥ 11 fm.
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Fig. 3. Results for the rescaled cumulant ratio R4,2 for different initial conditions
where the fireball evolves through a cross-over, second-order, or first-order transi-
tion.

In the most interesting case, µq = 160 MeV, where the system evolves
close to the critical point of a 2nd-order phase transition, the largest cumu-
lant ratio in the final state is observed for intermediate expansion velocities
v = 0.2–0.4c, while for the case when the system goes through a 1st-order
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phase transition, the final fluctuations are rather insensitive to the expansion
velocity (for the most interesting momentum range p = 200–600 MeV). This
allows, in principle, to distinguish between different types of the phase tran-
sition and indicates the expected longer relaxation times (“critical slowing
down”) around a critical point in the phase diagram, i.e., the system needs
longer to equilibrate and thus the fluctuations survive until the thermal
freeze-out. The absolute magnitude of the cumulant ratio increases with an
increasing net-baryon number (note the scaling factors s1, s2 ∼ 1/⟨Nq,net⟩2
in the plots of Fig. 3).

4. Conclusions

Although the fluctuations of net-baryon numbers in an expanding finite
system are less pronounced compared to the expectations from an equi-
librated infinite strongly interacting matter, our simulations suggest that
a significant deviation from the crossover behavior is observable through
higher-order cumulant ratios in different momentum bins, providing a pos-
itive candidate for an experimental signature of the chiral phase transition
and a possible critical region in the phase diagram of strongly interacting
matter.
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