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We extend our previously developed T -matrix framework for the strong-
ly-coupled quark–gluon plasma at vanishing chemical potential (µq = 0)
to finite values and utilize it to evaluate various quark number suscep-
tibilities, especially in heavy–light channels. Specifically, we introduce a
µq dependence into the quark propagators and interaction kernel using
two new parameters which are fitted to lattice-QCD (lQCD) data for the
baryon number susceptibility, χB

2 . Without further tuning, we calculate
the heavy–light susceptibilities and find that the resulting χuc

11 and χuc
22 are

qualitatively consistent with lQCD data. This agreement suggests that the
emergence of broad D-meson and charm-light diquark bound states in a
moderately hot QGP is compatible with lQCD results.
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1. Introduction

In ultra-relativistic heavy-ion collisions (URHICs), a deconfined state of
matter — quark–gluon plasma (QGP) — can be created at extreme temper-
atures. Historically, the QGP was expected to be a weakly coupled plasma
since the coupling strength should reduce at high temperature due to the
asymptotic freedom of Quantum Chromodynamics (QCD) [1]. Various quan-
tities computed in lattice QCD (lQCD), such as the equation of state or
quark-number susceptibilities, can be fairly well described by perturbative-
QCD (pQCD) calculations [2] down to temperatures as low as T ≃ 250MeV,
which seems to support the aforementioned expectation. However, as URHIC
experiments and their phenomenology progressed over the last two decades,
it has become increasingly evident that the QGP created in URHICs behaves
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as a strongly-coupled liquid with a small shear-viscosity-to-entropy ratio and
a large friction force for heavy quarks diffusing through it [4, 5]. However,
many of the approaches that are used to extract these transport proper-
ties are not directly sensitive to the microscopic structure of QCD matter
along with systematic constraints from various lQCD “observables”, such as
heavy–light susceptibilities [6, 7], which have been qualitatively reproduced
by weakly coupled approaches [2].

To address this issue, we here employ the T -matrix approach [8–12]
whose previously calculated transport coefficients [9] are similar to those in-
ferred from experimental results [13] while also being constrained by lQCD
“data”, i.e., the equation of state (EoS), heavy-quark (HQ) free energy, and
Euclidean quarkonium correlators. Thus far, this approach has not been ap-
plied to quark-number susceptibilities, which are available from lQCD [6, 7,
14, 15] with good precision and which are believed to be sensitive to the de-
grees of freedom in the system. This, in particular, should provide a valuable
test of the hadronic resonances which emerge in the in-medium T -matrices
well above the pseudo-critical temperature of Tpc ≃ 160 MeV and which are
instrumental in generating a large interaction strength between the massive
partons in the QGP. Toward this end, based on Ref. [16], in the present
proceedings we discuss the generalization of the T -matrix approach to fi-
nite chemical potential (µq) in Section 2 and the resulting susceptibilities in
Section 3, and finish with a summary in Section 4.

2. T -matrix approach at finite chemical potential

The T -matrix approach is based on a diagrammatic framework, where
series resummations are carried out through integral equations, dictated by
large values of the underlying Born amplitudes containing nonperturbative
interaction kernels. In particular, t-channel ladder diagrams are resummed,
which allows it to include the physics of dynamically generated bound states.

The methods developed in our previous works [9, 12] enable the calcula-
tion of the grand potential (negative pressure) non-perturbatively, utilizing
the self-consistent Luttinger–Ward formalism [17, 18] whose thermodynamic
consistency is compatible with the T -matrix approximation. We employ this
method to calculate the pressure at finite µq and then take the derivatives
to obtain the susceptibilities. The grand potential, Ω, has the form of

Ω ≡ −P = ∓
∑

Tr
{
ln
(
−G−1

)
+
[(
G0

)−1 −G−1
]
G
}
± Φ , (1)

where the G0 denotes “bare” propagators and G = ([G0]−1 −Σ)−1 are fully
dressed ones with self-energy Σ. The Luttinger–Ward functional (LWF), Φ,
accounts for dynamically-generated bound states upon resummation of the
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t-channel ladder diagrams

Φ =
1

2

∑
Tr

{
G

[
V +

1

2
V G0

(2)V + . . .+
1

ν
V G0

(2)V G0
(2) . . . .V + . . .

]
G

}
= −1

2
ln
[
1− V G0

(2)

]
. (2)

The two-body propagator, G0
(2) = −β−1

∑
ωn

G(iEn−ωn)G(−iωn), is an en-
ergy convolution over the Matsubara frequencies of two single-parton propa-
gators, and V is their interaction kernel (or two-body potential). The resum-
mation of the series in Eq. (2) is nontrivial due to the 1/ν factor (necessary
to eliminate double-counting), which can be performed using a matrix-log
method developed in Refs. [9, 10]. The self-consistent self-energy Σ can be
obtained by a functional derivative, δΦ/δG = Σ [18, 19] and expressed in
terms of the T -matrix schematically as

Σ =

∫
dp̃ T G , T = V + V G0

(2)T . (3)

The T -matrix equation resums ladder diagrams, which matches the trunca-
tion of the LWF in Eq. (2).

Our input is specified by the “bare” propagators and potentials as

G0(z,p) =
1

z − εp ± µi
, V (r) = −4

3
αs

e−mdr

r
+ σ

e−msr−(cbmsr)2

ms
, (4)

where εp =
√

M2
i + p2 and the subscript i refers to either light (i = q) or

charm (i = c) quarks. The two-body potentials used in Eqs. (2) and (3)
are obtained from Fourier transforms and augmented with relativistic cor-
rections in all available color channels. The parameter values for µi = 0
are the same as the strongly-coupled solution in Ref. [10] unless otherwise
stated. We introduce two additional parameters, bs and bm, to account for
a chemical-potential dependence in the parton and screening masses as

Mi = M i
per

√
1 + bm

(µq

T

)2
+M i

V , md = m0
d

√
1 + bs

(µq

T

)2
. (5)

The self-energy M i
per is the perturbative part of the parton masses at zero

chemical potential, which has been fixed in Ref. [10] by fitting the lQCD EoS,
whereas M i

V is self-consistently calculated from the potentials [10], which
can also have a chemical-potential dependence through the µq-dependent

potentials. The factor
√
1 + bm/s (µq/T )

2 in M and md is motivated from
hard-thermal loop (HTL) calculations [20].
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3. Numerical studies

With the theoretical formalism described above, we calculate the pres-
sure as a function of the light and charm-quark chemical potentials, P (µq, µc),
at a fixed temperature, using Eq. (1); the susceptibilities are obtained
through numerical derivatives with respect to the µi [16].

To proceed, we first tune the two parameters bm and bs to reproduce
the lQCD data on baryon number susceptibilities, χB

2 [21, 22]. Their re-
sulting temperature dependence is shown in the left panel of Fig. 1, while
the comparison between the corresponding χB

2 and lQCD data is shown in
the left panel of Fig. 2. The resulting two-body potentials (middle panel
of Fig. 1) exhibit a rather moderate screening even at sizable values for
µq, with long-range remnants of the confining force surviving. With these
“strong” potentials, the hadronic resonance structures, such as D-meson res-
onances, are supported at temperatures of 1.2Tpc and above (see the right
panel of Fig. 1). As mentioned above, these (dynamically generated) reso-
nance states are essential for the transport properties of heavy flavor in the
QGP [10, 23, 24].
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Fig. 1. Left panel: the new parameters, bs and bm, as obtained from the fit to χB
2 ;

middle panel: the color-singlet potentials at finite chemical potential; right panel:
D-meson resonances in the imaginary part of the T -matrix at zero µq/c.

The HQ and heavy–light susceptibilities are obtained without retuning
the b-parameters shown in Fig. 1. In particular, the pure charm susceptibil-
ities χc

2/4 are not affected by the finite-µq extension, i.e., independent of the
two new parameters and, therefore, direct predictions of the zero-µ theory
in Refs. [9, 10]. They turn out to be close to each other and consistent
with lQCD data, see the middle panel of Fig. 2. Compared to quasiparti-
cle results, the off-shell effects generate a noticeable enhancement. The two
heavy–light susceptibilities, χuc

11 and χuc
22, plotted in the right panel of Fig. 2,

also show fair agreement with lQCD data [6, 7]. In weakly coupled HTL
calculations at low orders [2, 25], χuc

11 is zero. This is the first time that this
susceptibility has been computed in a strongly-coupled approach beyond the
mean-field approximation, with the results found to be qualitatively consis-
tent with lQCD data.
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Fig. 2. Baryon number susceptibility χB
2 (left); charm number susceptibilities

χc
2/4 (middle); off-diagonal heavy–light susceptibilities χuc

11 and χuc
22 normalized by

χc
2 (right).

4. Summary

We have extended a strongly-coupled approach to the QGP — the ther-
modynamic T -matrix — to finite chemical potential and utilized it to study
quark number susceptibilities. Introducing two parameters that control the
chemical potential dependence of the screening and parton masses, we can
fit lQCD data for the baryon number susceptibility, χB

2 . Without further
tuning, we predict the charm susceptibilities, χc

2/4, and find them to be
consistent with lQCD results. Furthermore, the extracted heavy–light sus-
ceptibilities, χuc

11 and χuc
22, also show fair agreement with lQCD results. This

suggests that the strongly-coupled picture of the QGP obtained in the T -ma-
trix approach is consistent with lQCD susceptibilities. Together with the
constraints from several other types of lQCD data (e.g., for the EoS, HQ
free energies, and Euclidean quarkonium correlators) and the ability to gen-
erate transport parameters that are similar to those inferred from exper-
iments, the in-medium T -matrix seems to provide a viable model for the
microscopic description of the QGP, characterized by large parton scatter-
ing rates that highlight the quantum nature of the medium. A key role in
this picture is played by remnants of the confining force surviving well above
Tpc, thereby dynamically generating hadronic resonances that provide the
necessary partonic interaction strength.
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