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In this paper, we investigate the role of potential deformation in explain-
ing the α-decay. The deformation of the nuclear potential has been taken
into account by adding a Gaussian potential to the well-known Wood–
Saxon potential. For the numerical calculations, the Wentzel–Kramers–
Brillouin method has been used, and also the Bohr–Sommerfeld quantiza-
tion condition has been employed to restrict the parameters. The half-lives
of ten nuclei have been calculated for α-decay and very good agreement
has been obtained with the experimental data.
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1. Introduction

The α-decay is the direct result of the quantum tunneling process through
the Coulomb barrier and it is shown by Gamov [1] and Gurney and Con-
don [2] separately. The work of Gamow led him to derive analytical solutions
to get the half-lives of the interested parent nuclei. Geiger and Nuttall [3]
studied the same phenomena experimentally. The works of these scientists
lead to the developed cluster models in nuclear physics [4–8]. The cluster
models have a very important role in nuclear physics for two basic reasons.
Firstly, they may be used for a better understanding of the existing nu-
clei and secondly, they may lead scientists to create new super-heavy nuclei
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in particle accelerators [9–12]. Thus, in order to better understand cluster
models, studying the α-decay mechanism has a critical role. The mechanism
of α-decay is a widely studied topic. In order to understand the α-decay, re-
alistic nuclear potentials are proposed in many studies and the experimental
data were compared [4–21].

In order to study α-decay, one needs to solve the Schrödinger equation.
There are many attempts to solve the Schrödinger equation with a suitable
potential, however, only a few of them have analytical solutions. The rest
require numerical methods to get a solution [22–24]. Although there are
numerous successful potentials, they are not suitable for all the nuclei or they
do not completely explain the nuclear structure. Especially, the deformation
of the surface region creates problems for these nuclear potentials. In order
to overcome these effects, more realistic potentials are required. Considering
these problems, we have proposed a new realistic nuclear potential. Simply,
we have taken the Wood–Saxon potential and added a second term to disturb
the surface region. We have used the Gaussian potential as a perturbation
term. We have used the Wentzel–Kramers–Brillouin (WKB) method in our
calculations along with the Bohr–Sommerfeld quantization conditions. We
should point out that the shape of the nuclear potential directly affects the
WKB approach [25].

This study has been organized as follows: in the following section, we
introduce the theoretical model. Then, we present the results comparing
with the experimental data. Finally, we present the conclusion of this work.

2. Model

In a realistic nuclear model, there are three parts that shape the poten-
tial: the Coulomb, centrifugal, and nuclear potential. The sum of these three
potentials is called effective potential. For the α-decay, the shape of the ef-
fective potential, especially the shape of the surface is important [26–29].
Equation (1) defines the effective potential with radial distance r

Veff(r) = VC(r, θ) + VL(r) + VN(r, θ) . (1)

The Coulomb potential and centrifugal potential are well known. However,
the nuclear potential is still a hot topic and there are numerous suggested
models. One of the well-known potentials is the Wood–Saxon potential.
Although it is a successful model, it is not very successful for the agreement
with all the nuclei. Therefore, we suggest a new methodology where we add
a Gaussian term to the Wood–Saxon potential in order to take into account
a deformation effect. The model used in our calculation is given as follows:

VN(r, θ) = −λ(θ)
V0

1 + e
r−R
a

+ V1 e
[−(r−R)2] . (2)
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Here, R = r0A
1/3
d is the nuclear radius and A

1/3
d is the atomic mass of the

daughter nucleus. λ(θ) is the normalization parameter and it comes from the
restriction of the Bohr–Sommerfeld quantization condition. a is the diffusion
parameter, V0 and V1 are the depth of the nuclear potential. Finally, θ is
the orientation angle. As can be seen in equation (2), the first part is the
well-known Wood–Saxon potential and the second part is a Gaussian term.
The role of the Gaussian part is to deform the surface. Figure 1 shows the
difference between the Wood–Saxon potential and the suggested potential.
In figure 1, one can see the deformation in the surface region compared to
the Wood–Saxon potential.
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Fig. 1. (Color online) The dashed red line shows the shape of the effective potential
for Wood–Saxon. The blue line shows the shape of the proposed effective potential
namely Wood–Saxon+Gauss.

The Coulomb potential is a well known potential and may be given as

VC(r) =

{
ZαZde2

r , r ≥ R ,
ZαZde

2

2R

[
3−

(
r
R

)2]
, r < R .

(3)

In equation (3), Zd and Zα are the charges of the daughter nucleus and
the α particle, respectively. This potential can be written in two parts: the
inner part and the outer part of the nuclear radius. Since the charge of the
α particle has a uniform shape and the daughter nucleus has not, there is a
discontinuity at r = R. In order to overcome this discontinuity, the Coulomb
potential may be re-written in the form of equations (4) and (5) [30, 31] as

ṼC(r, θ) =
ZαZd e

2

r

[
1− e−φ(θ)r− 1

2
(φ(θ)r)2−0.35(φ(θ)r)3

]
, (4)

φ =
1

R

3

2
. (5)
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The centrifugal potential is also a well-known potential and by using Langer
modifications, it can be written as [32]

VL(r) =
ℏ2

(
L+ 1

2

)2
2µr2

. (6)

In this notation, µ is the reduced mass of the daughter nucleus and α particle,
while the L shows the angular momentum. The half-life of a nucleus can be
calculated using the equation [5, 6, 33]

T1/2 = ℏ
ln 2

Γ
. (7)

In equation (7), Γ represents the α-decay width. In semi-classical theory,
the Γ value for each of the nuclei can be found as [6]

Γ = PF̄
ℏ2

4µ
S̄ . (8)

In equation (8), there are three parameters that have to be fixed. The
first parameter is P which is the pre-formation factor, the second parameter
is the average of the normalization factor and it is represented by F̄ , and
finally, S̄ is the average of the transition probability. The pre-formation
factor can be found as [34–36]

Pα =


1.0 , even–even nuclei ,
0.6 , odd–A nuclei ,
0.35 , odd–odd nuclei .

(9)

The analytical calculations are very difficult to solve for calculating the
half-lives but the numerical solutions may provide reasonable results. In the
previous studies of Coban et al. [31] and Yıldırım et al. [21], these numerical
solutions have yielded very good results. In the following sections, we present
our results obtained by deformed nuclear potential with a comparison of the
experimental data.

3. Results and discussion

The half-lives of ten unstable nuclei have been calculated in this study.
In order to calculate the half-lives, we have employed the Wentzel–Kramers–
Brillouin method and we have also used the Bohr–Sommerfeld quantization
conditions to restrict equations. These ten nuclei have been chosen between
the atomic mass numbers of A = 106 and A = 198.
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The results of the numerical half-life calculations are given in Table 1.
The first column of Table 1 is the nuclei which we have chosen. The next
column shows the Q values of the α-decay of each nuclei. In the third column,
there are given the experimentally measured half-lives of these nuclei. The
next column shows the numerically calculated half-lives of this study and
they are labeled TGauss1/2 in order to show the effect of the deformation
by adding the Gauss potential. The last column shows the deviation of the
experimental and calculated half-lives for each of the chosen nuclei in the
decimal logarithm.

Table 1. The comparison between experimental data and numerically produced
data. The Q values and deviations of experimental and calculated data are also
presented in the table.

Nuclei
Qα

T exp1/2 TGauss1/2 log10
T exp1/2
T theo1/2[MeV]

106Te→ 102Sn + α 4.290 60 µs 73.9 µs −0.090
107Te→ 103Sn + α 4.008 3.1 ms 2.72 ms 0.056
108Te→ 104Sn + α 3.445 2.1 s 2.6 s −0.092
144Nd→ 140Ce + α 1.905 2.29× 1015 y 6.52× 1015 y −0.454
152Er→ 148Dy + α 4.934 10.3 s 12.4 s −0.082
153Er→ 149Dy + α 4.802 37.1 s 62.6 s −0.227

153Tm→ 149Ho + α 5.248 1.48 s 2.24 s −0.180
196At→ 192Bi + α 7.198 387 ms 457 ms −0.073
198At→ 194Bi + α 6.889 1.25 s 5.56 s −0.096
198Rn→ 194Po + α 7.349 65 ms 121 ms −0.272

As seen in Table 1, the experimental half-lives and the new calculated
half-lives are in very good agreement with each other. Clearly, this deformed
potential is promising for the calculation of the half-lives of the unstable
nuclei in the sense of α-decay.

4. Conclusion

In this paper, we have investigated the half-lives of ten unstable nuclei for
the α-decay. We have used the standard Wood–Saxon nuclear potential with
a Gaussian term to take into account the surface deformation. We have also
calculated the half-lives of the chosen nuclei numerically by employing the
Wentzel–Kramers–Brillouin method and also using the Bohr–Sommerfeld
quantization conditions. The new deformed nuclear potential provides very
good explanations to the experimental data and further applications of this
new potential will be performed for medium, heavy, and super-heavy nuclei.
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