Acta Physica Polonica B Proceedings Supplement 16, 2-A12 (2023)

PARALLELIZATION METHOD TO SPEED UP
THE TRACK RECONSTRUCTION PROGRAM
IN THE SPD NICA EXPERIMENT™* **

G.A. AMIRKHANOVA, M.Y. MANSUROVA

Department of Artificial Intelligence & Big Data
Al-Farabi Kazakh National University
71 al-Farabi Ave., Almaty, 050040, Kazakhstan

N.T. BURTEBAYEV, G.A. OSOSKOV

Institute of Nuclear Physics, Ibragimova str.1, Almaty, 050032, Kazakhstan

A.S. SHOMANOV

Nazarbayev University, Kabanbay batyr str. 53, Nur-Sultan, Kazakhstan

Received 14 November 2022, accepted 15 November 2022,
published online 26 January 2023

Reconstruction of trajectories of charged particles (tracking) is one of
the actual problems in experiments in high-energy physics. In the tracking
program developed by a team of authors of the Al-Farabi Kazakh National
University and JINR to process data registered by detectors located in the
magnetic field of the experimental setup SPD planned in a complex of the
JINR NICA collider, an algorithm is proposed for sifting out false tracks
that arise during neural network tracking. This algorithm is based on a
threshold criterion that calculates the quality of the helical line fit to the
samples that make up the candidate track recognized by the neural net-
work. In this paper, that continues this research, a method is proposed to
significantly speed up the algorithm to weed out false tracks by paralleling
it. The results of a comparative analysis of the computational speedup
when paralleling them with the condition of preserving the efficiency of
track reconstruction are shown.

DOI:10.5506 / APhysPolBSupp.16.2-A12

*

Presented at the IV International Scientific Forum Nuclear Science and Technologies,
Almaty, Kazakhstan, 26-30 September, 2022.

The work was supported by Program No. BR10965191 (Complex Research in Nuclear
and Radiation Physics, High Energy Physics and Cosmology for the Development of
Competitive Technologies) of the Ministry of Education and Science of the Republic
of Kazakhstan.

ok

(2-A12.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=16&aid=2-A12

2-A12.2 G.A. AMIRKHANOVA ET AL.

1. Introduction

One of the current problems in high-energy physics experiments is the
recognition of charged particle tracks. To obtain undistorted physical results,
it is necessary to weed out false candidate tracks appearing in the tracking
process. This work is a continuation of [1, 2| where a criterion for sifting out
false tracks is the mean square error of fitting the helical line to the counts,
of which the found candidate track consists.

The process of particle tracking plays an important role in high-energy
physics data processing. To track data recorded by detectors located in
the magnetic field of experimental setup SPD (Spin Physics Detector) at
NICA (Nuclotron-based Ion Collider facility) collider under construction at
the Joint Institute for Nuclear Research (JINR) [3]|, program TrackNetv3,
based on application of deep recurrent neural network [4] is used. At this
stage, the neural network is trained and tested on a training sample obtained
by the Monte Carlo simulation of events for simplified detector geometry.
However, during the neural network reconstruction of tracks, the appearance
of false track candidates, formed from pieces of close neighboring tracks,
noise samples, etc., is inevitable. To sift them, it is required to develop
special filtering algorithms responding to disturbance of particle trajectory
smoothness, presence of kinks, outliers of separate measurements, etc.

When solving the problem of particle reconstruction, we faced the prob-
lem of limitations related to the computational power of the computer on
which the calculations were carried out. To overcome these limitations, we
used paralleling techniques.

2. Parallelisation method to significantly speed up the algorithm
to weed out false tracks

In this work, we present 2 distinct parallel algorithms based on 2 differ-
ent track fitting approaches. Firstly, the first method that we describe is
based on fitting tracks by finding approximations to the helical trajectory
of points in a 3D plane. This method relies on the circle fitting method
that tries to find optimal parameters of the radius and coordinates of the
center [5]. Secondly, we present a different fitting method which relies on
polynomial fitting procedures [6]. This method has been found to approxi-
mate trajectories of the tracks with nearly the same accuracy, and here we
present a comparison of both methods and introduce parallel algorithms to
test their efficiency.

The parallel scheme, described in Fig. 1 applies for both of track fitting
algorithms. It splits the task into processing of the events by multiple simul-
taneous processes in round-robin way. In the dedicated pool of processes,
once the process finished computations for one event it can start working

Parallelization Method to Speed up the Track Reconstruction ... 2-A12.3

on the next one. Hence, in these algorithms we parallelize track fitting with
making a parallel threads running in parallel and hence achieving simul-
taneous processing of multiple events at the same time. The authors of
[7, 8] present methods that have a different approach — executing kernels
for several events simultaneously. The HLT GPU framework allows to run
independent processing components, each of which performs track recon-
struction on the same GPU if there is enough GPU memory for all of them
[9]. This approach can also load the GPU well but multiplies the memory
requirement by the number of simultaneous queues.

Memory storage of events

Event

Fetch data for Even

Fetch data for Event 1% Fetch data for Even etch datafor Event 3 Fetch data for Event k

Process 2 . .

Compute optimal Compute optimal Compute optimal Compute optimal
parameters for parameters for parameters for parameters for
events 1, k+1, events 2, k+2, events 2, k+2, events k, k+k,
2*%k+1,... 2%k+2,... 2%k+2,... 2*k+k,...

Fig. 1. Schematic diagram of the parallel algorithm.

In the proposed algorithm for computing optimal helix-loop parame-
ters in parallel, we used the approach based on running parallel threads,
where each thread performs a fitting procedure for events assigned to the
threads according to the round-robin enumeration and circular loop ordering
method. A schematic diagram of the parallel algorithm is shown in Fig. 1.

The table of all tracks contains the «x, y, z coordinates of the event vertex,
the identity number of the event IV, the station number s, the detector num-
ber d, and the track number 7" within the event. Due to the large number of
tracks formed by different convents, the idea of improving the performance
of the process of determining the optimum helical parameters for each of
the tracks arises. Thus, in our implementation, we propose a partitioning
algorithm based on computation using multi-threaded computation. The
partitioning algorithm is based on the round-robin approach based on the
idea of sequential execution of tasks. If we have k threads, tasks are dis-
tributed in such a way that the first thread will compute the first track in
the given table, the second thread will compute the second element, and so
on, until we reach the k' element (A*" thread is used to compute), after
which &+ 1" element will be processed by the first thread again, and so on,

2-A12.4 G.A. AMIRKHANOVA ET AL.

until all the elements of the table are processed. The running time of the
first parallel algorithm as a function of the number of threads is shown in
Fig. 2.

Running time of the parallel algorithm

140

100
80
60
40

Time, sec

20

2 4 8 16 32 64
number of threads

2 4 8 16 32 64

Fig.2. Running time of the parallel algorithm as a function of the number of
threads.

The input parameters for the second algorithm are the same as for the
first algorithm and contain the coordinates of the event vertex x, y, z, event
identification number N, station number s, detector number d, track num-
ber T within the event. The algorithm itself works on the basis of fitting
polynomials of the third degree for track coordinates. Due to the more effi-
cient computing cycle, this algorithm is characterized by a fast calculation
procedure and, accordingly, this algorithm is less expensive for computing
resources. Since the algorithm is iterative, it is required to determine the
optimal number of iterations for convergence to the required computational
accuracy. To do this, we applied methods for assessing convergence accord-
ing to the formula

log <|l757a|>

log(R) W

The algorithm is based on finding a third-degree spatial polynomial that
approximates the coordinates of the counts belonging to the given track can-
didate. To find new values of the points at each iteration, locally minimizing
the approximation error, the golden section search method is used. In this
case, it turns out to estimate the number of search iterations according to
the above formula (1). Searching by the golden ratio is an effective way to
gradually reduce the minimum search interval. The key is to ensure that
no matter how many points are evaluated, the minimum is within the in-
terval defined by the two points adjacent to the point with the lowest value

Parallelization Method to Speed up the Track Reconstruction ... 2-A12.5

evaluated. Next, polynomials are constructed using standard square error
minimization methods

k
E =Y Ip(z;) —y;|*. (2)
j=1

In reality, due to the inhomogeneity of the magnetic field of the SPD
setup and the influence of such various factors that distort the particle tra-
jectory, such as the Coulomb scattering and others, the helix in space ceases
to adequately describe the trajectory. In addition, the iterative non-linear
fitting method described above turns out to be slower than the linear ap-
proach and is more difficult to parallelize. Comparing both algorithms, we
can highlight the main aspects of each method.

Note that after the introduction of parallelism, the number of iterations
is no longer the main criterion. Thus, according to the results from Table 1,
Algorithm 2 seems to be more optimal from the point of view of the main
efficiency criteria mentioned above.

Table 1. Parallel algorithms in terms of the number of iterations, memory, and
complexity.

Number of iterations | Computational complexity | Memory usage

Algorithm 1 Low High High
Algorithm 2 High Average Average

Parallelisation is based on the multiprocessing library in the Python pro-
gramming language. As an implementation, an algorithm for splitting the
array of events into threads was used. The running time of the parallel
algorithm depending on the number of threads is shown in Fig. 3.

The algorithm was tested on a multi-core compute node with the fol-
lowing characteristics: number of cores — 32, memory — 64 Gb, processor
type — AMD Ryzen, disk memory (SSD) — 2 Tb.

This system supports up to 64 parallel threads, so in our experiment,
we have shown computation time results for sequential code without par-
allelization, with 2 parallel threads, 4 parallel threads, 8 parallel threads,
16 parallel threads, 32 parallel threads, and 64 parallel threads.

In our experiment we used a track table consisting of 42102 tracks. Thus,
the average execution time of a subroutine to calculate the optimum helix
parameters for one track from the whole set is approximately 0.5 x 1073 sec.

As we can see from the results, the algorithm shows a good speed-up,
with a six-fold speed-up achieved. It is worth noting, however, that there is
some deceleration of acceleration due to the additional memory fill factor.

2-A12.6 G.A. AMIRKHANOVA ET AL.

Running time plot
300.00

250.00

200.00

150.00

Time, sec

100.00

50.00

0.00

=
[¥]

4 3 16 32

Number of threads
= Algol == Algo2

Fig. 3. Comparative running time of two proposed parallel algorithms.

3. Conclusion

This article proposes a method for significantly speeding up the algorithm

for filtering out false tracks by parallelizing it. The results of a comparative
analysis of the acceleration of calculations during their parallelization with

the

(1]

2]

3]
4]
[5]
[6]

7]
18]

19]

condition of maintaining the efficiency of track reconstruction are shown.

REFERENCES

P.V. Goncharov et al., «Proceedings of the All-Russian Conference with
International Participation: Information and Telecommunication
Technologies and Mathematical Modelling of High-tech Systems», Moscow
2022, pp. 335-341.

Zh. Zhunusova et al., «Collection of Abstracts of the III International

Scientific Forum “Nuclear science and technology”», Almaty, Kazakhstan
2021, p. 72.

V.M. Abazov et al., arXiv:2102.00442 [hep-ex].
D. Baranov et al., «<CEUR Workshop Proc.», 2019, pp. 130-134, .
N.I. Chernov, G.A. Ososkov, Comput. Phys. Commun. 33, 329 (1984).

K. Mgrken T. Lyche, «Spline Methods», Centre of Mathematics for
Applications, University of Oslo, 2008.

A.S. Shomanov, M.E. Mansurova, J. Phys.: Conf. Ser. 1727, 012018 (2021).

M. Mansurova A. Shomanov, D. Akhmed-Zaki, «Parallel Computing
Technologies, Lecture Notes in Computer Science, 10421%», Cham: Springer,
2017, pp. 342-350.

ALICE Collaboration (D. Rohr, S. Gorbunov, V. Lindenstruth), J. Phys.:
Conf. Ser. 898, 032030 (2017).

http://arxiv.org/abs/arXiv:2102.00442
http://dx.doi.org/10.1016/0010-4655(84)90137-1
http://dx.doi.org/10.1088/1742-6596/1727/1/012018
http://dx.doi.org/10.1088/1742-6596/898/3/032030
http://dx.doi.org/10.1088/1742-6596/898/3/032030

	1 Introduction
	2 Parallelisation method to significantly speed up the algorithm to weed out false tracks
	3 Conclusion

