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The problem of describing the nucleon pairing energy in nuclei was
considered using a realistic nucleon–nucleon potential that reproduces the
parameters of nucleon–nucleon scattering. Satisfactory agreement between
the calculated and experimental values of the isotriplet nucleon pairing
energies for even–even nuclei was obtained.
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1. Introduction

The pairing energies of nucleons in nuclei largely determine the properties
of nuclei and nuclear matter (see, for example, reviews [1–3]). The authors
conventionally consider superfluid states of nuclei as the main mechanism of
pairing, in which the nucleon–nucleon interaction is not related to realistic
nucleon–nucleon forces but represents some residual interaction from the
nuclear forces spent on creating the potential of single-particle motion. How
the pair interaction of nucleons in nuclei differs from that of free nucleons,
at least for valence nucleons, remains an open question.

We define the experimental pairing energy Enn (Epp) as the difference be-
tween the bound energies of even Eb,N+2 (Eb,Z+2) and odd nucleons Eb,N+1

(Eb,Z+1) in the nuclei. Information can be obtained from [4] to analyze
the pairing energies. The range of neutron pairing energies obtained from
here can be estimated by comparing the maximum pairing energies of light
and heavy elements. Thus, the maximum neutron pairing energy for carbon
(106C) comprises 7.02 MeV, while the maximum pairing energy for uranium
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(22492U) is 3.8 times less and is equal to 1.83 MeV. Such a large difference
makes it difficult to analyze the original data. One of the reasons for this
difference is the different scales of the nuclear energy units (nuclear quantum)
for different nuclei. To exclude this reason, a standard definition of the en-
ergy of a nuclear quantum can be used ℏω = 41/A1/3 MeV with A = N +Z.
In such units, the neutron pairing energy for the 10

6C nucleus was 0.371 and
for 224

92U is 0.270; that is, the scaled energies differed by only 30%. This
makes it possible to analyze the pairing energy from the average values of
the neutron pairing energy for all isotopes of a given nucleus, that is, for a
fixed Z. Similarly, the proton pairing energy can be analyzed by averaging
all the proton pairing energies for a fixed N , that is, for the isotons.

Figure 1 presents the pairing values of neutrons and protons, calculated
using the specified algorithm. To make the figures more suitable for analysis,
only the pairing energies for the selected Z and N values are shown. The
errors indicated in these figures are equal to the errors in determining the
mean (one σ). To visualize the general trends, Fig. 1 shows the lines of the
average values of Ēnn (Ēpp) for the nuclei shown in the figure: dashed lines
for even nuclei and dash-dotted lines for odd nuclei. It can be seen that the
pairing energies of neutrons and protons for even nuclei are so close to each
other Ēnn/ℏω = 0.248± 0.005 and Ēpp/ℏω = 0.232± 0.004 that a separate
question arises about the smallness of the Coulomb repulsion of protons.
A similar situation was observed for the pairing energies of neutrons and
protons in odd nuclei: Ēnn/ℏω = 0.176±0.009 and Ēpp/ℏω = 0.163±0.008.
In this case, the pairing energies for even and odd nuclei were significantly
different. The different binding energies of nucleons in even and odd nuclei
are reflected in the Weizsäcker formula. However, here, we deal with different
nucleon pairing energies for even and odd nuclei.

Fig. 1. Experimental energies of nn-pairing (left) and pp-pairing (right). Filled
squares — even Z(N), filled circles — odd Z(N). Explanations are given in the
text.
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The proximity of the average pairing values of protons and neutrons
indicates common pairing mechanisms for both neutrons and protons, which
can be ordinary pair interactions in the isovector state (T = 1) for the
singlet (S = 0) state of a pair of nucleons. Below, we consider the zero-
range interaction model and the Yamaguchi-type pair interaction model.
The model suitability criterion was the closeness of the calculated pairing
energy to the experimental values shown in Fig. 1.

2. Model

For the sake of brevity, we will further assume ℏ = 1. A shell model with
the possibility of separating the motion of the center of inertia of the pair is
most suitable for pair interactions with realistic parameters. Therefore, we
used a shell model with a single-particle motion potential in the form of a
three-dimensional harmonic oscillator, whose Hamiltonian H1 for a nucleon
with mass m

H1 = − 1

2m
∆+

mω2r2

2
(1)

generates a single-particle spectrum

E1 = ω

(
3

2
+ l + 2n

)
, n = 0, 1, 2 . . . (2)

The Fermi statistics of nucleons are considered only in the filling of the
shells rule, considering the ls-coupling, determining the orbital momentum l,
and the radial quantum number n of the state. In addition, the shell-filling
rule was used in the calculation model; the total momentum of a pair of
odd and even nucleons was equal to zero. That is, the orbital moments
of the nucleons of a pair must be the same, and the spectrum of the two
non-interacting nucleons must have the form of

E2 = ω(3 + 2l + 4nr) , nr = 0, 1, 2 . . . (3)

The Hamiltonian H0
2 of two non-interacting particles with coordinates

r1 and r2 in the oscillator well can be written in terms of the coordinates
of the center of inertia of the pair R = (r1 + r2)/2 and the coordinates of
the relative motion r = r2 − r1 in the form of

H0
2 = − 1

m
∆r −

1

4m
∆R +

mω2r2

4
+mω2R2 (4)

allowing the variables to be separated, the energy of the two non-interacting
nucleons can be written as the sum of the energies of the motion of the
center of mass ER and the relative motion Er in forms similar to (3)

E2 = ω(3+lR+lr+2nr+2nR) , nr = 0, 1, 2 . . . , nR = 0, 1, 2 . . . (5)
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The orbital momentums of the relative motion lr and the motion of the
center of inertia lR must be the same, making the net angular momentum
equal to 0. If we assume that internucleon forces determine the pairing
energy of nucleons, then determining the contribution of the S-wave pair
interaction leads to the condition lr = 0. Therefore, it follows from Eqs. (3)
and (5) that

l + 2n = nr + nR , (6)

that is, the sum of the radial quantum numbers nr and nR is determined by
the number N of the quantum shell of the nucleus N = l+2n. Considering
the basic states of the nuclei, it is assumed that the center of inertia moves
with minimum energy, that is, nR = 0. Therefore, the energy of the relative
motion without pair interaction can be written as

E0
r = ω

(
3

2
+ 2N

)
, N = l + 2n . (7)

The inclusion of the S-wave pair interaction allows us to write the radial
Schrödinger equation for relative motion in the form of

− 1

m

1

r2
d

dr
r2

d

dr
Ψ +

mω2r2

4
Ψ + V Ψ = Ein

r Ψ . (8)

In this case, the nucleon pairing energy Enn (Epp) is determined by the
difference

Enn = E0
r − Ein

r . (9)

Yamaguchi’s separable potential [5] was chosen as a realistic nucleon–
nucleon interaction model. In momentum representation, this potential
takes the form of

V
(
p, p′

)
= v(p)v

(
p′
)
= −8π

m

β(β + κ)2

(β2 + p2) (β2 + p′ 2)
, (10)

where the parameters κ and β are determined by the pair length a2 and the
effective scattering radius reff [5]

a2 =
2(β + κ)2

κ(2β + κ)β
, reff =

(β + κ)2 + 2β2

β(β + κ)2
. (11)

Note that at β ≫ κ, parameters (11) are determined by the asymptotic form

a2 ≈
1

κ
, reff ≈ 3

β
, (12)
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which allows for pair interaction to be set up via zero-range potentials.
Therefore, for the asymptotic solution at β → ∞, one can write the condi-
tion for pair interaction

(rΨ)′

rΨ

∣∣∣∣
r→∞

=
1

κ
, (13)

which determines the scattering phase in such a formulation of the problem
or the binding energy of a pair.

Since the Yamaguchi potential in the configuration space also has a sep-
arable form

V
(
r, r′

)
= v(r)v

(
r′
)
= −β(β + κ)2

2πm

e−βr

r

e−βr′

r′
, (14)

then the solution to Eq. (8) is the solution of the equation for a harmonic
oscillator with a non-homogeneous term of type (14). To write this solution,
we introduce regular F and irregular G at the zero solution for the harmonic
oscillator equation with energy E and oscillatory length x20 = 2/mω

F = e
− r2

2x20 rM

(
2ω − 2E

4ω
,
3

2
,
r2

x20

)
, G = e

− r2

2x20 rU

(
2ω − 2E

4ω
,
3

2
,
r2

x20

)
,

(15)
which are expressed in terms of Kummer’s functions M(a, b, z) and function
U(a, b, z) (see, for example, [7]). The properties of these solutions near zero
and at the infinity [7] allow to write down the solution of (7) in the form of

ϕ(r;E) ≡ rΨ ∝ 1

W

 r∫
0

dr′e−βr′G(r)F
(
r′
)
+

∞∫
r

dr′e−βr′F (r)G
(
r′
) .

(16)
At spectral points, at E = Ein

r , defined by the equation

1 =
2β(β + κ)2

W

 ∞∫
0

dr e−βrG(r)

r∫
0

dr′ e−βr′F
(
r′
)

+

∞∫
0

dr e−βrF (r)

∞∫
r

dr′ e−βr′G
(
r′
) , (17)

function (16) becomes square-integrable. The symbols W in (16) and (17)
define the Wronskian of the solutions: W = F ′G−G′F . Within the frame-
work of the model described above, the solution to Eqs. (16) and (17) de-
termines the nucleon-pairing energy.
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Furthermore, the nucleon pairing energy was determined using the nu-
merical solution of Eq. (17). Here, we present the results of the analysis for
large values of the parameter β. Since the integrals in (17) depend on (15),
the asymptotic parameter is βx0. For the analysis, asymptotic methods can
be used to estimate integrals in the simplest form by performing multiple in-
tegrations by parts. Consequently, the following simplified spectral equation
was obtained

G′(0)

G(0)
≈ −κ(2β + κ)β

2(β + κ)2
+

3

2β
K2 +O

(
(βx0)

−2
)
, (18)

where K2 = mE. Considering (11) and (12), the resulting equation looks
like an expansion of the effective radius only for discrete spectrum functions

G′(0)

G(0)
≈ − 1

a2
+

r2eff
2

K2 . (19)

In particular, as β → ∞, Eq. (18) or (19) tend toward the well-known
equation for the spectrum of a pair of point bosons in harmonic traps [8]

Γ
(
3
4 − Ein

r
2ω

)
Γ
(
1
4 − Ein

r
2ω

) 2

x0
=

1

a2
, (20)

which can be used to analyze the adequacy of the applicability of the point
interaction with the experimental length of the pair interaction in describing
the pair correlations.

3. Results and discussion

To solve Eq. (17), one should know the parameters β and κ of the Yam-
aguchi potential. These parameters can be obtained by comparing Eq. (11)
with the experimental values of a2 and reff . Below, we use the accepted
average values for isotriplet [9]

a2 = −18.5± 0.3 fm , reff = 2.75± 0.11 fm : T = 1 , S = 0 . (21)

It can be seen that the effective radius for the isotriplet interactions is known
with a quite large error (4%). Therefore, the error in the calculations below
reflects the uncertainty of the experimental values in Eq. (21), which are
displayed graphically as filled rectangles.

Let us first consider the applicability of the hypothesis of a possible de-
scription of the nucleon pairing energy using the point interaction (20) with
experimental scattering lengths (21). The properties of Eq. (20) are quite
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obvious, and we can indicate that in the absence of the pair interaction
(a2/x0 → 0), the solution to this equation is determined by the features of
the gamma function in numerator (20) when the argument of the gamma
function is a negative integer or 0. That is, Ein

r = E0
r from Eq. (9). In the

case of large scattering lengths (x0/a2 → 0), the spectrum (20) is determined
by the singularities of the denominator and Ein

r = ω(1/2+2N), N = l+2n;
that is, the energy in this limiting case is shifted by one nuclear quantum. By
substituting the experimental scattering lengths from Eq. (21), we obtain al-
most the same values for the energy shifts. In particular, for the isotriplet in-
teraction we obtain the solutions (20): (Ein

r )/ω = 0.5694, 2.5362, 4.5273, . . .,
which in comparison with the spectrum of the harmonic oscillator (E0

r )/ω =
1.5, 3.5, 5.5, . . . give the shifts Enn/ω = 0.931, 0.964, 0.973, . . ., which are
very close to one nuclear quantum. The pairing energies obtained were
approximately four times greater than the experimental values (Fig. 1) in
even–even nuclei. The conclusion of this paragraph is that the pair interac-
tion of nucleons in the form of point interaction with experimental scattering
lengths does not describe the pairing energy of nucleons in the nuclei. Let us
consider the solutions to Eq. (17) with a paired nucleon–nucleon potential
of the Yamaguchi-type for isotriplet interactions. Figure 2 shows the exper-
imental results and calculation from Eq. (17), the pairing energies Enn and
Epp for even–even nuclei. The calculated values in the figure are displayed
as filled rectangles, the heights of which were determined by 8% uncertainty
of the experimental values (21). The influence of the Coulomb interaction
Upp = e2/r of protons was considered in the first-order perturbation theory.

Fig. 2. Experimental and calculated energies of nn-pairing (left) and pp-pairing
(right).

In addition to graphical information about pairing energies, Table 1 pro-
vides the average pairing energies of isotopes and isotones for even–even
nuclei, as shown in Fig. 2. There is satisfactory agreement between the cal-
culation and experiment; there are groups of nuclei where the experiment
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Table 1. Average experimental and calculated nucleon pairing energies of even–even
nuclei.

Nucleon pairing
Experiment Calculation

Calculation without

energy the Coulomb repulsion

Ēnn 0.248± 0.005 0.217± 0.013

Ēpp 0.232± 0.004 0.195± 0.013 0.234± 0.013

and theory diverge by approximately 50%, providing a discrepancy between
the average values of the binding energy. The ideal agreement between the
experimental values of proton pairing and theoretical calculations without
considering the Coulomb repulsion of protons is most likely accidental.

4. Conclusion

Calculations show that the Yamaguchi potential, which describes the
interaction of two nucleons in vacuum, generally describes the experimental
energy of the isotriplet pairing of nucleons in atomic nuclei for even–even
nuclei.

This work was performed under grant AP09258757 from the Ministry of
Education and Science of the Republic of Kazakhstan.

REFERENCES

[1] S. Frauendorf, A.O. Macchiavelli, Prog. Part. Nucl. Phys. 78, 24 (2014).
[2] B.S. Ishkhanov, M.E. Stepanov, T.Yu. Tretyakova, Moscow Univ. Phys. Bull.

69, 1 (2014).
[3] D.J. Dean, Rev. Mod. Phys. 75, 607 (2003).
[4] Nuclear Wallet Cards database version of 5/16/2019,

https://www.nndc.bnl.gov/nudat3/indx_sigma.jsp
[5] Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
[6] J.R. Taylor, «Scattering Theory: The Quantum Theory on Nonrelativistic

Collisions», J. Wiley and Sons, Inc., New York, London, Sidney, Toronto
1972.

[7] M. Abramowitz, I. Stegun, «Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables», National Bureau of Standards,
1964.

[8] T. Busch, B.G. Englert, K. Rzażewski, M. Wilkens, Found. Phys. 28, 549
(1998).

[9] I. Slaus, Y. Akaishi, H. Tanaka, Phys. Rep. 173, 257 (1989).

http://dx.doi.org/10.1016/j.ppnp.2014.07.001
http://dx.doi.org/10.3103/S0027134914010068
http://dx.doi.org/10.3103/S0027134914010068
http://dx.doi.org/10.1103/RevModPhys.75.607
https://www.nndc.bnl.gov/nudat3/indx_sigma.jsp
http://dx.doi.org/10.1103/PhysRev.95.1628
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1016/0370-1573(89)90127-0

	1 Introduction
	2 Model
	3 Results and discussion
	4 Conclusion

