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Computer simulations of the transition of quarks to hadrons, hadrons
to quark–gluon plasma, and plasma to hadrons have been carried out. Non-
linear quark–gluon dynamics is considered a quantum process within the
framework of discrete mappings. The dynamic variable is the momentum
fraction (x) of the QCD parton, which acts as a one-dimensional Poincaré
section in the momentum phase space. The probability of finding a certain
fraction of the momentum of a parton at a given moment is determined
by the momentum distribution of the partons at the previous moment in
time. At critical values of the control parameter, bifurcations of phase
quark–gluon trajectories occur. As a result of the counteraction of the pro-
cesses of emission and absorption of gluons, stable attractor quark–gluon
structures are formed. The Poisson stability is determined by the Lya-
punov exponents. The sequence of bifurcations converges and chaos arises.
The change from regular quark–gluon dynamics to irregular chaotic one
corresponds to the limit of multiple hadronic processes and the emergence
of quark–gluon matter in the deconfinement state. Chaotization of the
dynamical system leads to thermalization of the quark–gluon medium.
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1. Introduction

As is known, problems arise in the mathematical method of describing
quantum chromodynamics (QCD) in the nonperturbative region at large
distances, when the perturbation theory is inapplicable. Accounting for
the contribution of gluon emission to the quark–gluon evolution leads to
violation of the Bjorken scaling and is determined by the well-known linear
equations DGLAP [1–3], BFKL [4–6]. Gluon emission in QCD is determined
by the splitting functions Fg/g(z), Fg/q(z), Fq/g(z), Fq/q(z) of the probability
to find a gluon in a gluon (g/g) or a gluon in a quark (g/q) with a momentum
fraction z. However, to take into account the fusion of gluons, it is necessary
to introduce the phenomenological probability of the fusion of QCD quanta.
Many different methods for modeling evolutionary equations with allowance
for gluon recombination have been proposed [7–9]. The action Yang–Mills
(Y–M) already contains cubic and quartic nonlinear interaction terms in the
field strength tensor SY–M = −1

4

∫
d4xF a

µν(x)F
µν
a (x).

In the quantum world, processes are probabilistic in nature. The ampli-
tude of the transition probability from one state to another is the sum of the
amplitudes of all possible trajectories and is written as a functional integral:
ψ =

∫
e

iS(x)
ℏ Dx(t) with ℏ being the Planck constant. The action S(x) is an

operator of quantum evolution. Dx(t) is a conditional functional integration
over all trajectories x(t). Fast phase fluctuations in the imaginary exponent
cancel each other out, and only trajectories with minimal action remain. In
the quantum world, one can speak of well-defined amplitudes of trajectories,
and the particle moves not along one chosen amplitude, but along an infinite
set with the same start and end points. The particle can move along any
trajectory, and the amplitude of this trajectory, in response, will be included
with a certain weight.

2. Nonlinear quark–gluon cascade

Considering evolution in nonlinear dynamics as a discrete quantum pro-
cess, we use the mathematical apparatus of discrete mappings instead of
differential equations. The nonlinear equation is introduced [10, 11] as an
evolution of the nucleon structure function F2(x,Q

2). Using the method of
Poincare sections and choosing the share of momentum as a one-dimensional
section of the phase space of partons momentum distribution (PDF), we have
an evolution equation

xt+1 = λF (xt) . (1)

Here, Bjorken’s or Feynman’s variable xt is the momentum fraction at
a discrete time (t = 0, 1, 2 . . .), λ is a control parameter characterizing the
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degree of correlation of a given parton with other partons at a certain en-
ergy/temperature. The control parameter determines the nature of the evo-
lution regimes. Switching to continuous time allows the construction, known
as the Poincare section. In the framework of our quality approach, we use
the renormalization-group (RG) approach to the evolution equation, allow-
ing to recreate a physical picture of the critical behavior. The number of
partons varies with the energy scale, but the total momentum is naturally
conserved. For a nonlinear quark–gluon cascade, the probability of finding a
certain fraction of the parton momentum xt+1 at a given moment (t+ 1) is
determined by the momentum distribution of partons at the previous time
moment (t). The positive terms of the parton momentum distribution cor-
respond to an increase in the number of quarks and gluons in the cascade,
while the negative terms correspond to a decrease. The negative members
of the distribution correspond to recombinations: quark–antiquark, quark–
gluon, and gluon–gluon.

3. Numerical solution of the nonlinear equation

The numerical solution of the nonlinear cascade of parton distribution
functions (PDF) showed the termination of evolution in the region of small
values of the control parameter λ < 0.25. Small perturbations do not change
the PDF. The increase in λ leads at first only to the excitation stable state.
With a further increase in the parameter, repeated period doubling bifurca-
tions occur. Numerical calculations show that the bifurcation sequence λm
quickly converges at λ∞ = 0.892 and chaos is observed. The scale of succes-
sive splittings of elements of limit cycles after each bifurcation is determined
by

αF = lim
m→∞

(
xm − xn
xm+1 − xn

)
∼= 2.5 , (2)

lim
m→∞

λm − λm−1

λm+1 − λm
= δF = 4.6692 , (3)

where αF and δF are the Feigenbaum constants [12], xm is the element of a
limit cycle nearest to the element cycle xn.

The structure of the bifurcation diagrams display of PDF self-similar and
thus, the chaotic system has inherent properties of fractals. Fractal analysis
of PDF Fm carried out the averaging over all k values, defined as

Fm =
1

N − 2m

N−2m∑
k=0

|xk+2m − xk| . (4)

In a state of dynamic chaos, two close orbits in phase space diverge
exponentially with time with Lyapunov’s coefficient in the exponent: αL =
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ln |µ|
T , which in a computer simulation is calculated using parallel running

of two close initial conditions and examines their divergence. Computer
simulation was used to study the formation of stable structures in a quark-
gluon cascade. The nature of stability of fixed points (cycles) and the type
of bifurcations of mappings is determined by their multipliers. In turn,
multipliers are the own numbers of the Jacobian matrix perturbations. The
maximum value xt+1 is found from dxt+1/dxt = 0. The Jacobian is J =

|dxt+1

dxt
| and the map is stable at a point x0 if J(x0) < 1. When the coupling

constant αS(Q
2) is small, the evolution is incoherent, if the relationship is

strong enough that spontaneous synchronization quark–gluon movements
can occur. The dynamics of quark–gluon systems is very sensitive to initial
conditions. The Lyapunov exponent is calculated for stationary periodic and
chaotic processes.

Analyzing only the structures of attractors without taking into account
transient processes and iterating the mapping for different initial values with
a slow change in the control parameter, we obtain the results shown in
figure 1.

Fig. 1. Different regimes of nonlinear evolution for different values of the control
parameter λ.

In a nonlinear quark–gluon cascade, the counteraction of intense ra-
diation and absorption processes leads to the formation of asymptotically
Poisson-stable states. These are the so-called attractors. At values of the
control parameter close to unity, regular ordered dynamics of the quarks
and gluons transforms into irregular dynamics with exponentially diverg-
ing phase trajectories. That is how a chaos arises. The transition to the
chaos state means a transition to the state of deconfinement: the partons
cease to be bound in the limit of hadron size and form the QGP state. The
confinement–deconfinement transition, as well as the restoration of chiral
symmetry, is described on the basis of the transition of the QCD partons by
nonlinear regular evolution to the state of irregular dynamic chaos.

A difference between chaotic and non-chaotic modes is given in figure 2,
where we select the modulus of the difference between phase trajectories
with close initial values.
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Fig. 2. Regular and chaotic modes.

The figure shows how small (10−3) the regular phase trajectories differ
(left) and how much diverge (10+2) in the chaotic case (right).

The processes of multiple hadron production correspond to the bifurca-
tions of phase trajectories followed by the formation of stable structures.
The possibility of forming stable structures is related to the effective compe-
tition between the processes of merging and splitting of quarks and gluons.
In nonlinear dynamics, an infinite cascade of bifurcations exponentially con-
verges at a certain value of the control parameter. The cascade process of
formation of stable hadronic structures passes into an irregular regime of
dynamic chaos. Thus, at a sufficient energy density in nuclear and hadronic
interactions, cascade multiple hadron processes cease and a chaotic irregular
dynamics of quarks and gluons arises.

An increase in the collision energy of nuclei and hadrons corresponds
to an increase in the value of the control parameter of nonlinear dynamics.
Branching processes of formation of secondary hadrons are associated with
a cascade of period-doubling bifurcations. The convergence of the sequence
of period-doubling bifurcations at a critical value of the control parameter
leads to the termination of multiple processes when all points of the phase
trajectory become unstable. There is a chaotic irregular dynamics of quarks
and gluons leading to thermalization of the state.

Thus, similarly to the convergence of the well-known Feigenbaum logistic
map [12–14], the nonlinear quark–gluon cascade of bifurcations converges.
This happens when the value of the control parameter is λ = 0.892. The
formation of QGP through mixed hadron and quark phases at a value of the
control parameter close to unity and further plasma hadronization are shown
in figure 3. The presence of “voids” in the bifurcation diagram indicates the
presence of “hadron-like structures”. The figure shows a dependency graph
of the equation

xi,j = λjF (xi−1,j) . (5)

An increase of nuclei and hadrons collision energy corresponds to an in-
crease of the nonlinear dynamics control parameter’s value. Regular branch-
ing processes of secondary hadrons cascade production are associated with
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Fig. 3. Transition of partons to hadrons (0.75 < λ < 0.892), hadrons and quarks
to QCP (0.892 < λ < 1) and QGP to hadrons.

a cascade of period-doubling bifurcations. It is necessary to note that par-
ticles from a vacuum are born in pairs. The convergence of the sequence
of period-doubling bifurcations at a critical value of the control parameter
leads to termination of multiple processes, when all points of the phase tra-
jectory become unstable. A chaotic irregular dynamics of quarks and gluons,
associated with thermalization of QGP arises. The presence of “voids” in the
bifurcation diagram indicates the presence of a “hadron-like phase”.

4. Conclusion and outlook

Arising in the quark–gluon cascade, the strange attractor with a fractal
self-similar structure displays a new nonlinear phenomenon in the hadron
physics is deterministic chaotic dynamics [15]. Dynamic quark–gluon sys-
tems are highly sensitive to the initial conditions.

Thus, the nonlinear PDF mapping represents itself the nonlinear dy-
namics in the phase space of a strongly correlated quark–gluon dynamical
system. As a result of competing processes of creation and fusion, sta-
ble quark–gluon attractor structures are formed. As the control parameter
increases, successive bifurcations of the orbits occur corresponding to the
production of secondary hadrons. Bifurcation diagrams form fractal struc-
tures. The sequence of bifurcations converges exponentially at the critical
point λ = λ∞. The hadrons “melt”, and the nonlinear quark–gluon cas-
cade passes from regular to chaotic dynamics. The transition of the system
into dynamically determined chaos corresponds to the appearance of de-
confinement QGP. Hadronization of QGP is modeled by the formation of
stable quark–gluon structures.
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