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Nowadays, simulated data are commonly used in modern high-energy
physics experiments. They are essential not only in determining certain
performances but also in training machine learning algorithms. However,
in some cases, such as rare heavy meson decays, generating data requires
enormous computational resources. To speed up this process significantly,
we propose a new method — to replicate simulated data using existing
samples. Preliminary results of the algorithm are presented.
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1. Introduction

In recent years, multivariate analysis and machine learning have played
an increasingly important role in HEP applications, mainly in the classifi-
cation process. Constantly improving, sophisticated algorithms obtain un-
precedented performance in terms of efficiency and purity. However, most
of them require large datasets to achieve the best possible result. The most
common solution to this problem is using Monte Carlo simulations to model
the signal processes. Nevertheless, such an approach can be problematic
when it comes to rare and topologically complex processes, namely heavy
meson decays. In that case, creating artificial data requires enormous com-
putational resources and takes a lot of time.

Hence, we present a different approach to this problem — data augmen-
tation. This method is already widely used in various ML applications, such
as computer-aided image analysis [1]. The main idea is to use the existing
data as input to the generative neural network. Thus, in the end, we can
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get a set of new events, with slightly different parameters. This process
can be noticeably faster than time- and resource-consuming Monte Carlo
simulations.

Two main types of network architecture that can be used to generate
new data are: generative adversarial networks (GANs [2]) and variational
auto-encoders (VAEs [3]). In this paper, the application of the latter ones
is covered.

2. Network architecture

2.1. Classical auto-encoders

An auto-encoder (AE) is a specific type of neural network which learns
how to efficiently compress the input data x, encode it in a hidden layer (or
layers) z, and then reconstruct it in the best possible way at the output r. It
consists of two main parts: an encoder — responsible for the transformation
of input data into its latent representation (often referred to as code), and
a decoder — a part that takes care of the reversed process. The idea itself
is not new, as it was already present in the 80s and 90s (e.g. Rumelhart,
Hinton, and Williams 1986 [4]). In the beginning, auto-encoders were used
for dimensionality reduction, feature extraction, or denoising. Typical auto-
encoder architecture is presented in Fig. 1.

Fig. 1. Diagram of a typical auto-encoder used in image analysis [5].

In the most straightforward approach, one can treat the encoder and
decoder as functions, z = f(x) and r = g(z), respectively. This interpre-
tation, however, is not sufficient in most present applications. Instead, one
takes a more general approach, using stochastic mapping: qencoder(z|x) and
pdecoder(x|z) [6]. Later, this generalisation will be crucial for understanding
variational auto-encoders.

The classical auto-encoder has a shape of a bottleneck. It means that
its latent space has a smaller dimension than the input. So, the encoding
process will compress the data, while decoding will try to reconstruct it
without losing much information. Such a procedure allows us to find the
most important features in the dataset (feature extraction) and remove the
unnecessary ones, e.g. the noise. One may notice that AE can be treated as
enhanced PCA (as PCA transformation has to be linear).
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2.2. Variational auto-encoders

Variational auto-encoders, contrary to classical ones, can generate new
data. To do that, one samples the latent space, i.e. draws a data point from
the distribution p(z). Then, the network connects the drawn values of z
to the features x via conditional distribution p(x|z) — a trained decoder.
The latent space itself is decorrelated — the network should be able to learn
all dependencies between variables and restore them during the decoding
process. That is why all zi-s can be treated as independent random variables.

It can be shown [3, 7] that the loss function for a variational auto-encoder
is given by Eq. (1)

LVAE = −Ez∼q(z|x) log pmodel(x|z) +DKL(q(z|x)||pmodel(z)) . (1)

This loss function is called ELBO [8] (Evidence Lower BOund) because
one can recognise it as the variational log-likelihood lower bound with the
reversed sign. The first term in Eq. (1) is the reconstruction log-likelihood
that minimises the discrepancies between encoded and decoded data. The
second term, expressed as the Kullback–Leibler divergence between posterior
distribution q(z|x) and model prior p(z), is responsible for latent space
regularisation.

3. Results

Using the Python library PyTorch [9], we created the VAE model with a
loss function in the form of Eq. (1). The tests were conducted using ROOT
files containing all necessary variables in the B0

s → K∗∓D∗±
s decay. The

topology of this process is very complicated, so we started by examining the
sub-decay: D±

s → K+K−π± and its final states’ four-momenta were taken
as the input to the auto-encoder.

The model successfully reconstructs the variables’ distributions (Fig. 2),
as well as the correlations between them (Fig. 3). However, a more de-
tailed study was needed to check whether multiplied events are valid from
the physics point of view. The invariant mass reconstruction from the
4-momentum coordinates seemed to be a reasonable test. Unfortunately,
the resulting mass distribution does not follow the expected shape, as pre-
sented in Fig. 4 (a). The mass histogram does not peak around the D±

s table
mass (1968.35±0.07) MeV/c2 [10]. The distribution is very spread out and
a lot of negative values appear1. We tried to improve our model by adding
a third, physically motivated term to our loss function

λ (mDs,table −mKKπ,rec)
2 , λ ∈ [0, 1] , (2)

1 If the E2 − p2 was negative for a given event, the mass would be calculated as
−
√

|E2 − p2|.
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Fig. 2. 4-momentum distributions of one of the hadrons in the D±
s → K+K−π±

final state — comparison of original samples and those generated using VAE.

(a) (b)

Fig. 3. Correlation matrices for: (a) original samples and (b) those generated using
VAE. 4-momenta of D±

s → K+K−π± final states were used as input features.
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where mDs,table is a table mass of D±
s [10] and mKKπ,rec is a mass calculated

from reconstructed 4-momentum coordinates of the final-state particles. It
improved our results significantly, see Fig. 4 (b), but negative values were
still observed. Reconstructing the mass of a 3-particle system seemed too

(a) (b)

Fig. 4. Reconstructed mass of Ds candidates before (a) and after (b) adding a
physically motivated term to loss function.

difficult for our network at the time. Hence, we tried a less challenging task:
reconstructing the mass of a single charged pion. Surprisingly, even with
the new loss function, the model failed to do it properly, see Fig. 5 (a). The
breakthrough has come when we used squared 4-momentum coordinates as
the input. It allowed us to obtain very promising results. The mass peak was
centered around the pion table mass (139.57039± 0.00018) [10], the spread
of the distribution was two orders of magnitude smaller, and no negative
values were observed (Fig. 5 (b)).

(a) (b)

Fig. 5. Reconstructed mass of π± candidates for: (a) 4-momentum coordinates as
input, (b) squared 4-momentum coordinates as the input.



3-A17.6 K. Sowa et al.

4. Conclusions and future plans

The results presented in this paper are preliminary, and further work is
underway to refine the method. The reconstruction of 4-momentum distri-
butions is at a satisfactory level. However, significant discrepancies remain
when it comes to particle mass reconstruction. Further research will be
done, and our model will be developed to achieve desired results for individ-
ual particles and, subsequently, for the whole decay chain.
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