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Recently, generative Machine Learning methods have gained a num-
ber of applications in physics analysis and detector science as they prove
to be an excellent tool for data modeling. Generative Adversarial Net-
works (GANs), invented in 2014, were a breakthrough in computer vision
and image synthesis, e.g. being able to generate realistic human faces. Al-
though these networks show a growing presence in High-Energy Physics,
their applications in this field are still quite scarce. The document investi-
gates the potential use of GANs in Monte Carlo (MC) data generation in
physics analysis, on the example of B0 → D−

s π+ decay, simulated under
the LHCb spectrometer geometry, and investigates whether they could be
potentially used as an alternative method to the existing MC generators.
Although GAN can quickly learn the shape of the distribution and recreate
some correlations between physics parameters, its disadvantage is the lack
of precision. The paper gives an overview of GAN capabilities as well as
the optimized configuration of the model.
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1. Introduction

The Monte Carlo (MC) data simulation and data multiplication are com-
mon problems in physics data analysis. Laborious MC studies are often
necessary to grasp the relationship between similar decays after physics se-
lection and to carefully model the mass spectrum from the generated data,
such that a similar model could be used for the real physics data. The pa-
per investigates the potential use of the modern Machine Learning (ML)
method to recreate the mass spectrum using Generative Adversarial Net-
works (GAN). The signal decay was chosen to be B0 → D−

s π+ and was
studied assuming the LHCb [1] experiment’s spectrometer geometry [2].
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GANs [3] are lately brought up as the most effective generative models,
which found a variety of applications, from computer vision [4], image syn-
thesis [5], semantic segmentation, and image-to-image translation to natural
language processing. GAN is a complex system built of two components,
one generative and one discriminative, which are deep neural networks (for
a detailed explanation of neural networks and deep processing, one could
refer to [6]). The generator tries to fool the discriminator and generate ob-
jects that are possibly close to the ones coming from the real dataset, such
that the discriminator cannot recognize which one is real or fake. At the
same time, the discriminator tries to correctly classify the objects and to
tell whether they are real or fake. A scheme of a simple GAN model and its
training is shown in Fig. 1.

Fig. 1. The generic scheme of GAN.

The training of the model can be expressed as follows, the generator G
and the discriminator D follow a mini–max strategy, and according to the
computed loss, their weights (latent space parameters) are updated by mak-
ing steps in the direction toward the highest descent of the gradient of the
loss. In the Goodfellow model [3], the loss function of the generator was a
binary cross-entropy (1)

Lgen = min[log(D(x)) + log(1−D(G(n)))] , (1)

where x is a real data sample, and G(n) is a fake data sample generated from
the noise array n. The discriminator D does not update the weights, while G
computes its updated weights. Because both G and D aim to minimize their
losses, the mini–max strategy could be expressed, according to Goodfellow,
as

min
G

max
D

V (D,G)=E
(
Xpdata(x)[log(D(x))]

)
+E

(
Ypy(y)[log(1−D(G(y)))]

)
,

(2)
where D(X) is the probability estimation of a real sample being categorized
correctly, D(G(y)) is a probability estimation that a fake sample is judged
as false, EX and EY are expected values when a whole dataset is taken into
account, and finally, V (D,G) is the adversarial loss.
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In 2017, Arjovsky [7] replaced Goodfellow’s adversarial loss with an al-
ternative, which nowadays is known as Wasserstein loss [8], as it refers to
the Wasserstein metric. The Wasserstein metric, or Wasserstein distance, is
in this case the distance between the real and generated datasets, computed
as a multiplication of the number of moves required to change the shape
of the distribution times the Euclidean distance between both distributions.
The Wasserstein GAN (WGAN) proved to be much more efficient in image
generation, and the study presented in this document is, in fact, based on
this variant of the model.

The main problem of WGAN in physics data generation is their lack of
mathematical precision. While WGANs are powerful in image generation,
there is no big difference for the image if a pixel or group of pixels change
their color indices or the ratio between colors intensity. Such fluctuations
cannot be happening in complex mathematical modeling. This issue can
be addressed by reducing the dimensionality of the input features. The
studies presented in this paper use only six real values of the kinematical
variables, more precisely, the decay products momentum of D−

s and π+ in
B0 → D−

s π+. This way, the number of degrees of freedom is significantly
lower than in the image processing WGAN proved to be very effective in. As
explored in the studies, some more complex mathematical formulas might
be troublesome to reflect due to the stochastic gradient descent limitations.

2. The model analysis

A data sample of 105 events of B0 → D−
s π+ was generated using Rapid-

Sim [10], an engine with implemented the LHCb detector geometry. PyTorch
was chosen as an environment for the model (a Python library for deep
learning), introducing WGAN implemented earlier by Lindernoren [11], and
trained on the dataset from RapidSim. GAN started to generate the physics
events, and because the whole model is very complex, it was then adjusted for
the optimal hyper-parameter configuration in many steps by a grid search.
The setup found as optimal for this type of physics event generation was as
follows: G architecture 10×300×600×6, D architecture 6×600×300×2, the
learning rate 1.6× 10−4, batch size 500, the maximal number of epochs 500,
optimizer ADAM (an improved stochastic gradient descent) with β1 = 0.5
(the exponent’s index of decay rate in ADAM’s gradient weighting), and the
6-dimensional latent noise input array. Such a latent input space setup was
chosen to push the network to learn only a linear transformation between
the uncorrelated noise base to the base of six real values of the momentum.

The training of the model is visualized in Fig. 2, with G and D loss
and the prediction accuracy of D, which approaches 0.5 at the end of the
training. The convergence means that D and G train at the same pace,
but the training has to be stopped before the losses reach 0.5, as then the
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generator can see the discriminator behavior as random, and the feedback
it gives gets less valuable. G and D loss approach 0.75 as the mini–max
strategy they follow reaches the point of equilibrium. This perfect training
of the model is usually hard to achieve in computer vision and was possible
mostly due to the low number of degrees of freedom.

Fig. 2. The generator and discriminator G and D loss, and the prediction accuracy
of the discriminator D.

After the training, WGAN was able to generate the physics parameters
with distribution shapes corresponding to those from the training dataset.
Figure 3 presents one of the generated real values, the X momentum of D−

s ,
and the comparison to the training dataset from RapidSim. The distribution
is reflected quite nicely but the very peak, where the number of events is
slightly underestimated. When the momentum vector of that product is
taken in a whole in the form of three real values, it can be used to calculate
D−

s total energy (provided the mass of D−
s is known from PDG mD−

s
=

1969 ± 1.4 MeV). When this expression is computed using the generated
kinematical variables, the resulting distribution of energy is consistent with
that obtained from the training dataset as well, which is shown in Fig. 4.

Unlike the total energy of the product, a mass of the B0 is given by
a much more complex function (a function of six real values), and unfor-
tunately, WGAN is not able to reconstruct the correlations deep enough to
make the mass distribution to be correctly reconstructed, or at least to come
close to the uncertainties that can be achieved using standard MC genera-
tors. The idea proposed by Szumlak is to further modify the loss function
(pursuing Arjovsky’s idea) and to add to the loss function an additional
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cost that would reflect the nature of the mathematical expressions used in
physics analysis, which operate on the squares of the variables (the momenta
are always squared when computing the energy and mass).

Fig. 3. The reconstructed X momentum of D−
s using the Wasserstein GAN.

Fig. 4. The energy of D−
s computed using kinematical variables generated by

WGAN.
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3. Conclusions

The paper presents preliminary studies of using modern generative sys-
tems in the MC data generation problem. The most advanced method in
the field, Generative Adversarial Network, was applied to the example of
B0 → D−

s π+ decay and was optimized for the considered problem, with
the optimal configuration given in this document. The Wasserstein GAN
can recreate the physics events of the decay to some precision. Further re-
search on this matter is very promising, in particular after the success, which
generative models achieved lately in Computer Science.

We acknowledge support from the National Science Centre, Poland (NCN)
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