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1. Introduction

Giant Resonances are collective excitations in nuclei that have been
known for several decades [1]. The excitation energy and strength distri-
bution of such resonances depend on the underlying nuclear interaction and
have been very useful in characterizing the nuclear Equation of State (EoS)
[2] — a definition and short introduction are given in Sec. 2. Specially im-
portant is the role of sum rules (Sec. 3) which, in some special cases, allow
for direct access to basic nuclear properties. In this respect, one of the most
paradigmatic examples is the incompressibility of the finite nucleus [3].

In this contribution, I will briefly review a selection of recent analyses
of the Giant Monopole (GMR), Dipole (GDR) resonances, in Secs. 4 and 5
respectively, as well as the Isobaric Analog Resonance (IAS) and the Spin-
Dipole Resonance (SDR) in Secs. 6 and 7, respectively. These sections will
be complemented with an introductory discussion of sum rules using, in
some cases, simple models to justify the physical meaning and soundness of
the presented theoretical analysis.
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2. The nuclear Equation of State

The nuclear Equation of State (EoS) is commonly defined as the energy
per particle (e ≡ E/A) of an unpolarized infinite system of neutrons and
protons at zero temperature and where the Coulomb interaction is neglected.
Hence, it is customarily written in terms of the neutron and proton densities
e(ρn, ρp) or, equivalently, in terms of the total density ρ ≡ ρn + ρp and
relative difference β ≡ (ρn + ρp)/ρ as e(ρ, β). Although this is an ideal
system, it is very useful in order to theoretically investigate the impact of
nuclear interaction on the bulk properties of nuclei and neutron stars.

Stable nuclei typically show small values of β. Due to this and assuming
isospin symmetry, it is useful to expand e(ρ, β) for small β as

e(ρ, β) = e(ρ, 0) + S(ρ)β2 +O
[
β4

]
, (1)

where it has been shown that around saturation, the parabolic expansion is
already a very good approximation even for β = 1. The first term in the
right-hand side of the equation is the so-called symmetric matter EoS, while
the second term is the so-called symmetry energy, a penalty energy to the
system for departing from the most stable configuration e(ρ, 0).

Finite nuclei and some properties of neutron stars are sensitive to den-
sities around the nuclear saturation density (ρ0 = 0.16 fm−3). Expanding
the symmetric matter EoS and the symmetry energy around ρ0 allows to
define different coefficients that would characterize the EoS and can be eas-
ily calculated with most of the nuclear models available in the literature.
That is,

e(ρ, 0) = e(ρ0, 0) +
1

2
Kϵ2 +O

[
ϵ3
]
, (2)

S(ρ) = J − Lϵ+
1

2
Ksymϵ

2 +O
[
ϵ3
]
, (3)

where ϵ ≡ (ρ0 − ρ)/3ρ0.
In the present contribution, I will present a discussion on how the values

of K, J , and L have been — or could be — estimated from the theoretical
analysis of the experimental data on the isoscalar (IS) GMR, isovector (IV)
GDR as well as on two charge exchange resonances: the IAS and the SDR.

3. Strength function and sum rules

The reaction-independent part of the nuclear response to an external
perturbation is encoded in the strength function

S(E) ≡
∑
ν

|⟨ν|O|0⟩|2δ(E − Eν − E0) , (4)

where O is the transition operator that models the specific excitation proved
in experiment, |0⟩ is the ground state, and |ν⟩ an excited state.
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Of special interest for this contribution are the moments of the strength
function, also referred to in the literature as sum rules

mk =

∫
dEEkS(E) =

∑
ν

|⟨ν|O|0⟩|2δ(Eν − E0)
k . (5)

Assuming the completeness of the excitation spectra, one can rewrite the
sum rules in a computationally convenient way involving only an expectation
value on the ground state. Of particular interest for the study of Giant
Resonances are the non-energy-weighted sum rule

m0 = ⟨0|O†O|0⟩ = 1

2
⟨0|

{
O†,O

}
|0⟩ , (6)

and the energy-weighted sum rule

m1 =
1

2
⟨0|

[
O†, [H,O]

]
|0⟩ , (7)

as well as the inverse energy-weighted sum rule. The latter can be calculated
by means of the dielectric theorem that relates the variation of the expecta-
tion value of the Hamiltonian under the action of a small perturbation λO
with the inverse energy-weighted sum rule. In perturbation theory,

δ⟨H⟩ = λ2
∑
ν

|⟨ν|O|0⟩|2

Eν − E0
+O

[
λ3

]
= λ2m−1 +O

[
λ3

]
, (8)

where a variation in the expectation value of the operator can be written as

δ⟨O⟩ = −2λ
∑
ν

|⟨ν|O|0⟩|2

Eν − E0
+O

[
λ2

]
= −2m−1 +O

[
λ2

]
(9)

and, thus,

m−1 =
1

2

∂2⟨H⟩
∂λ2

∣∣∣∣
λ=0

= −1

2

∂⟨O⟩
∂λ

∣∣∣∣
λ=0

(10)

or, equivalently,
1

m−1
= −2

∂2⟨H⟩
∂⟨O⟩2

. (11)

Based on these sum rules, one can define two different excitation energies
(Ex) of a Giant Resonance, the centroid and constrained Ex are defined as

Ecent
x ≡ m1

m0
and Econs

x ≡
√

m1

m−1
. (12)
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4. Giant Monopole Resonance

The ISGMR is a collective mode associated with nuclear excitations with
a change in the angular orbital momentum ∆L = 0 and the spin ∆S = 0.
The theoretical operator that models monopole transitions is

OGMR =
A∑
i

r2Y00(r̂) . (13)

Assuming this operator, one can write(
EISGMR

x

)2
=

m1

m−1
= 4

ℏ2

m

〈
r2
〉 ∂2E

∂⟨r2⟩2
≡ KA

ℏ2

m⟨r2⟩
, (14)

where the incompressibility of a finite nucleus KA has been defined in an
analogous way to the thermodynamic definition of the inverse of compress-
ibility. That is [2],

KA ≡ 4
〈
r2
〉2 ∂2E

∂⟨r2⟩2
, (15)

hence, a theoretical proof of the relation of EISGMR
x with incompressibility

of the infinite system K = KA→∞. Based on this insight, many works have
analyzed the experimental data on EISGMR

x in order to characterize K in
e(ρ, 0). Note that the analysis will always require a modeling of the surface
and isospin-asymmetry effects.

One of the main problems that have been raised in the analysis of the
ISGMR in connection with the K parameter of the EoS is that models that
tend to describe Ex in closed-shell nuclei such as 208Pb overestimate the
Ex in open-shell nuclei such as Sn isotopes [3]. Different possibilities have
been discussed in the literature (see Refs. [2, 3] for details). Here, I just
briefly discuss one of the main and new recent results [4], where the softness
of the Sn isotopes is addressed by advocating for correlations beyond the
mean-field.

In Ref. [4], it is shown that pairing effects allow for a larger number of
active configurations with respect to magic nuclei predicting a larger energy
shift of the ISGMR when particle-vibrations effects are considered in open-
shell Sn isotopes (cf. Fig. 2 in [4]). This feature paves the way to a unified
description of the monopole resonance and to a coherent analysis that may
shed some light on the value of K. In Fig. 1, the excitation energy of the
ISGMR in 120Sn (upper panel) and 48Ca (lower panel) as a function of the
excitation energy of the ISGMR in 208Pb as predicted by a set of Skyrme
functionals is shown. Black squares correspond to calculations based on
the Quasi-particle Random Phase Approximation QRPA, while blue circles
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Fig. 1. (Colour on-line) Excitation energy of the ISGMR in 120Sn (upper panel) and
48Ca (lower panel) as a function of the excitation energy of the ISGMR in 208Pb.
Predictions with different Skyrme functionals are shown. Black squares correspond
to calculations based on the Quasi-particle Random Phase Approximation, while
blue circles correspond to the Quasi-particle Particle Vibration Coupling approach.
Figure taken from Ref. [4].

correspond to the Quasi-particle Particle Vibration Coupling (QPVC) ap-
proach. Although the experimental crossing area (light blue bands) is not
crossed by theory, the inclusion of correlations beyond the mean-field ap-
proach allows for a clear improvement. The best description is given by
SV-K226 and KDE0 models, which are characterized by incompressibility
values of 226 MeV and 229 MeV, respectively, at the mean-field level. Re-
garding the connection between beyond mean-field calculations using effec-
tive interactions fitted at the mean-field level — as in [4] — that would be
instrumental to reliably determine K, some work is still needed.
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5. Giant Dipole Resonance

The IVGDR is a collective mode associated with nuclear excitations with
a change in the angular momentum ∆L = 0 and spin ∆S = 0. Since we are
interested here on the isovector channel, protons and neutrons will be proven
differently. Specifically, the theoretical operator that models isovector dipole
transitions and that correctly subtracts effects coming from the center-of-
mass motion is

OGDR =
N

A

Z∑
i

rY1M (r̂i)−
Z

A

N∑
i

rY1M (r̂i) , (16)

where one must average over the magnetic quantum number M . Assuming
this operator, one can apply the Dielectric Theorem to calculate m−1 and,
thus, the electric dipole polarizability αD = (8πe2/9)m−1. Another option is
to rely on the RPA or other more complex many-body approximations, such
as the PVC. In order to gain a simple physical insight into this observable,
in Ref. [5], the Droplet Model (DM) expression was proposed for guidance
(see [6] for more details)

αDM
D ≈ πe2

54

A⟨r2⟩
J

(
1 +

5

3

L

J
ϵA

)
, (17)

where ϵA ≡ (ρ0−ρA)/sρ0 and ρA is an average density probed in experiments
measuring αD and provided that this simple macroscopic approach captures
the main features of the electric dipole polarizability (see a discussion in
[2, 7] for more details). The latter equation points towards a correlation
between αDJ and L that is fulfilled by nuclear Energy Density Functionals
(EDFs) of the Skyrme and relativistic type as shown in Fig. 2 for the case of
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Fig. 2. Dipole polarizability in 208Pb times the symmetry energy at saturation J

as a function of the slope parameter L. Figure taken from Ref. [5].
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208Pb — RPA calculations have been used in this publication. This type of
analysis based on EDFs has allowed to determine a linear relation between
J and L on the basis of the experimental data on αD [7]

J = (24.5± 0.8) + (0.168± 0.007)L from 208Pb , (18)
J = (24.9± 2.0) + (0.19± 0.02)L from 68Ni , (19)
J = (25.4± 1.1) + (0.17± 0.01)L from 120Sn . (20)

6. Isobaric Analog State

The IAS is a collective mode associated with nuclear excitations with an
isospin charge exchange. The theoretical operator that models this transi-
tions is

O±
IAS =

A∑
i

t±(i) ≡ T± , (21)

where t± ≡ τ±/2 and τ± are the Pauli matrices in isospin space that ex-
change a neutron into a proton and vice versa and follow the same com-
mutation relations as the ladder operators. The excitation energy of this
resonance, assuming now the τ− channel which is dominant in a neutron
rich nucleus, can then be calculated as

EIAS
x =

m1

m0
=

⟨0|T+[H, T−]|0⟩
⟨0|T+T−|0⟩

. (22)

Hence, the only terms that contribute to EIAS
x are those that break isospin

symmetry ([H, T−] ̸= 0). The largest term in the nuclear Hamiltonian that
breaks isospin symmetry is the Coulomb potential, being the leading term,
the Coulomb direct term (Hartree) with respect to the Coulomb exchange
(Fock) and with respect to Coulomb corrections1. However, a small contri-
bution from nuclear Isospin Symmetry Breaking (ISB) effects must be taken
into account not only for a detailed study of the IAS and the Nolen—Schiffer
anomaly [8] but also for the study of the nuclear EoS [9].

The excitation energy of the IAS can be related to the neutron skin
thickness (∆rnp = ⟨r2n⟩1/2 − ⟨r2p⟩1/2) and, thus, to the slope parameter L
[10, 11] using a very simple model based on the fact that the Coulomb
direct term will give the largest contribution to EIAS

x . That is, assuming

1 Those corrections are of different nature. Many-body correction to the first order
Hartree–Fock scheme, as well as QED corrections to the Coulomb potential generated
by protons. Electromagnetic spin–orbit contributions from protons and neutrons are
small but would also need to be taken into account.
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no isospin mixing (⟨0|T+T−|0⟩ = N − Z) and a sharp sphere model for the
neutron and proton densities, one finds

EIAS
x =

6

5

Ze2

Rp

(
1− 1

2

N

N − Z

Rn −Rp

Rp

)
, (23)

where ∆rnp =
√

(3/5)(Rn − Rp). This general trend of increasing EIAS
x

for decreasing neutron skin thickness is shown in Fig. 3 by actual RPA
calculations based on Skyrme and covariant EDFs (see Ref. [9] for details on
the calculations and the experimental constraints shown as black arrows).
The models used in this figure contain only Coulomb direct and Coulomb
exchange — in Slater approximation — contributions to the IAS energy
and none of them is able to describe the experimental value (shown as a
black dashed line). What is missing are Coulomb corrections plus some
contribution from nuclear ISB terms, the latter being model-dependent and
unknown in the nuclear medium. Hence, the determination of ISB in the
medium can shed light on the EoS parameter L provided the fact that we
know with exquisite accuracy the EIAS

x in many nuclei.
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Fig. 3. Energy of the IAS as a function of the neutron skin thickness in 208Pb. The
arrows indicate the experimental results from polarized proton elastic scattering,
parity-violating elastic electron scattering, and the electric dipole polarizability (see
Ref. [9] for details). Figure taken from Ref. [9].

7. Spin-Dipole Resonance

The SDR is a collective charge exchange mode associated with nuclear
excitations with a change in the angular orbital momentum ∆L = 1 and the
spin ∆S = 1. The theoretical operator that modes spin-dipole transitions is

O±
SDR =

A∑
i

τ±(i)r
L
i [Y1M (r̂i)⊗ σ(i)]JM . (24)
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Theoretically, the connection of this type of nuclear excitations and the EoS
is particularly simple in this mode. Indeed, the difference of the non-energy-
weighted sum rules in the two isospin channels is

m0

(
O−

SDR

)
−m0

(
O+

SDR

)
=

9

4π

(
N

〈
r2n
〉1/2 − Z

〈
r2p
〉1/2)

. (25)

This expression can be written in terms of the charge radius — well known
from experiment — and the neutron skin thickness of the nucleus under
study. Hence, the SDR can give valuable hints on the slope parameter L.
Different measurements are available in the literature [12]. We show in Fig. 4
the experimental results for the SDR in 90Zr [13] (red dots) that agree well
with theoretical calculations — Skyrme EDFs with and without tensor terms
— and would predict via the present sum rule approach a neutron skin
thickness in 90Zr of 0.07 ± 0.04 fm. Data on the SDR in 208Pb exist [14].
However, this experimental result would predict a neutron skin thickness
in this nucleus that is very small as compared with other experimental and
theoretical analyses.
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Fig. 4. (Colour on-line) SDR strength function of the τ− (top) and τ+ (bottom)
channel in 90Zr calculated by SAMi-T with and without tensor, in comparison with
experimental and SAMi functional (see Ref. [15] for details on the calculations).
Figure taken from Ref. [15].

8. Conclusions

Collective excitation modes have been used over the years to learn about
the nuclear equation of state at around saturation density. Specifically, sum
rules of some selected modes have been instrumental for this aim [2]. In this
contribution, I have briefly presented some modes of collective excitation
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that are of particular interest to this topic and that, at the same time, have
revitalized the field in the last years. Special emphasis must be given to
the ISGMR and the IVGDR in this context since robust experimental data
exist. With the advent of new experimental techniques, such type of studies
are now a reality also in exotic nuclei. On the other side, solid theoretical
methods as well as clear interpretations support recent analyses that connect
all modes presented here with some basic parameters of the nuclear equation
of state.
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