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In this contribution, we present the main relations of the Langevin ap-
proach to the description of fission or fusion–fission reactions. The results
of Langevin calculations are demonstrated for the mass distributions of fis-
sion fragments of super-heavy elements and investigation of memory effects
in nuclear fission.

DOI:10.5506/APhysPolBSupp.16.4-A20

1. Introduction

We describe the nuclear fission process by the four-dimensional set of
the Langevin equations for the shape degrees of freedom with the shape
given by the two-center shell model (TCSM) shape parametrization. The
potential energy is calculated within the macroscopic–microscopic method.
The collective mass, M , and friction, γ, tensors are defined in macroscopic
(Werner–Wheller and wall-and-window formula) or microscopic (linear re-
sponse theory) approaches.

We start calculations from the ground-state shape with zero collective
velocities and solve equations until the neck radius of the nucleus turns zero
(scission point). At the scission point, the solutions of Langevin equations
supply complete information about the system, its shape, excitation energy,
and collective velocities. This information makes it possible to calculate the
mass distributions, the total kinetic energy, and the excitation energies of
fission fragments. The results of numerous calculations are in reasonable
agreement with the available experimental data.
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In this contribution, we present the calculated results for the mass dis-
tributions of super-heavy nuclei and clarify the impact of memory effects on
the fission width of heavy nuclei.

The physics of super-heavy elements (SHE) has a long history. The
existence of the “island of stability” was predicted at the end of the 1960s [1].
Nevertheless, it took almost 30 years until the alpha-decay of the element
with Z = 114 was observed experimentally at the Flerov Nuclear Reactions
Laboratory in Dubna [2].

With the development of experimental facility, it became possible not
only to fix the fact of formation of SHE, but examine its properties. The
first property of interest is the process of fission of SHEs. For the successful
planning and carrying out of experiments, it is crucial to understand what
kind of fission fragments mass distribution (FFMD) one should expect in
the result of the fission of SHEs. The two double magic nuclei 132Sn and
208Pb may contribute. Both have the shell correction in the ground state of
the same magnitude.

In order to clarify what kind of FFMD one could expect in the fission of
SHEs, we have carried out the calculations of FFMD for a number of SHEs.
The results are given in Section 3.

Another problem we address in this contribution is the influence of mem-
ory effects on the probability of the fission process. Commonly, one uses the
Markovian approximation to Langevin approach in which all quantities are
defined at the same moment. This approximation provides reasonable re-
sults, but its accuracy is not well established. In publications, one can find
statements that the memory effects have a significant influence on the fusion
or fission processes and the statements that memory effects are very small.

To clarify this uncertainty, we have calculated the fission width using
the Langevin approach with memory effects included in a wide range of
important parameters: the excitation energy E∗ of the system, the damping
parameter η, and the relaxation time τ . The details and results of the
calculations are given in Section 4.

2. The Langevin approach for the fission process

Within the Langevin approach, the fission process is described by solving
the equations for the time evolution of the shape of nuclear surface of the fis-
sioning system. For the shape parametrization, we use that of the two-center
shell model (TCSM) [3] with 4 deformation parameters qµ = z0/R0, δ1, δ2, α.
Here, z0/R0 refers to the distance between the centers of left and right os-
cillator potentials, R0 being the radius of spherical nucleus with the mass
number A. The parameters δi describe the deformation of the right and
left fragment tips. The fourth parameter α is the mass asymmetry and the
fifth parameter of the TCSM shape parametrization ϵ was kept constant,
ϵ = 0.35, in all our calculations.
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The first-order differential equations (Langevin equations) for the time
dependence of collective variables qµ and the conjugated momenta pµ are

dqµ
dt

=
(
m−1

)
µν

pν ,

dpµ
dt

= −∂F (q, T )

∂qµ
− 1

2

∂m−1
νσ

∂qµ
pνpσ − γµνm

−1
νσ pσ + gµνRν(t) . (1)

In Eqs. (1), the F (q, T ) is the temperature-dependent free energy of the
system, γµν and (m−1)µν are the friction and inverse of mass tensors, and
gµν is the strength of the random force.

The free energy F (q, T ) is calculated within the shell correction method.
The single-particle energies are calculated with the deformed Woods–Saxon
potential fitted to the mentioned above TCSM shape parameterizations.

The collective inertia tensor mµν is calculated by the Werner–Wheeler
approximation and for the friction tensor γµν , we used the wall-and-window
formula. The random force gµνξν(t) is the product of white noise ξν(t) and
the temperature-dependent strength factors gµν . The factors gµν are related
to the temperature and friction tensor via the Einstein relation

gµσgσν = Tγµν . (2)

The temperature T is kept constant, aT 2 = E∗, or adjusted to the local
excitation energy on each step of integration by the relation

aT 2 = E∗ − p2(t)

(2M)
− [Epot(q)− Epot (qgs)] . (3)

Here, qgs is the ground-state deformation. More details are given in our
earlier publications [4–7].

Initially, the momenta pµ are set to zero, and calculations are started
from the ground-state deformation. Such calculations are continued until
the trajectories reach the “scission point”, defined as the point in deformation
space where the neck radius turns zero. At the scission point, the solutions
of Langevin equations supply the complete information on the system, its
shape, collective velocities, and excitation energy.

3. Fission fragments mass distributions of super-heavy nuclei

In order to understand what kind of mass distributions one can expect
from the solution of Langevin equations, we looked first at the potential
energy of fissioning nuclei. Figure 1 shows the potential energy Edef of
nuclei 296Lv and 302120 at zero temperature as a function of elongation (the
distance R12 between the left and right parts of a nucleus) and the mass
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asymmetry (fragment mass number). In the top part of Fig. 1, the energy
was minimized with respect to the deformation parameters δ1 and δ2. One
sees the bottom of potential energy leading to an almost symmetric mass
splitting. There is also a hint on the mass asymmetric valley at AF close to
AF = 208.
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Fig. 1. (top) The potential energy of 296Lv and 302120 at T = 0 minimized with
respect to deformation parameters δ1 and δ2 (bottom), and at fixed values δ1 =

−0.2 and δ2 = 0.2.

If the trajectories followed the bottom of potential energy, the mass
distributions would be symmetric. However, it is well known that the tra-
jectories may deviate substantially from the bottom of the potential valley
due to dynamic effects. We calculate the trajectories in the four-dimensional
deformation space. In this space, the local minima could be leading away
from the bottom of the potential valley. An example is shown in the bot-
tom part of Fig. 1. Here, we show the potential energy for fixed δ1 = −0.2
and δ2 = 0.2. One clearly sees another valley, leading to a strongly mass
asymmetric splitting.

In Fig. 2, we show the fission fragment mass distributions of super-heavy
nuclei from 276Hs to 308122 as a function of fragment mass number AF. The
FFMDs of nuclei from 276Cn to 308122 have three or four peak structures.
The main component is the symmetric peak, split into two components in
some isotopes. The peaks of lighter fragments are located around AF = 140.
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Fig. 2. The fission fragment mass distributions of super-heavy nuclei from 276Hs to
308122 calculated for the excitation energies E∗ = 10, 20, and 30 MeV as a function
of the fragment mass number.

One can also see the strongly asymmetric peak at the mass number close
to AF = 208. The strength of the (almost) symmetric and asymmetric com-
ponents in FFMD of SHEs depends on the proton and neutron numbers of
the compound nucleus. For 276Cn, the contribution of a strongly asymmetric
peak is tiny. This contribution becomes larger for more heavy SHE. In some
elements of SHEs with Z = 116–122, the symmetric and mass-asymmetric
peaks are of the same magnitude. More details can be found in [8].

The similar strongly mass-asymmetric peaks in FFMD of SHEs were also
obtained recently in [9] within the Langevin approach with the so-called
Fourier shape parametrization.

4. The memory effects in nuclear fission

In order to investigate the role of memory effects in nuclear fission, we
exploit a simple one-dimensional model with the potential energy given by
the two-parabolic potential (Kramers potential), see Fig. 3
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Epot(q)=
2Vbq(q − q0)

q20
, 0<q<q0; 2Vb(q−q0)(2q0−q)q20 , q0<q<2q0 .

(4)
Potential (4) depends on two parameters, the barrier height Vb and the
barrier width q0. We have fixed the barrier height Vb = 6 MeV, which is
close to the value of the fission barrier of actinide nuclei. The width of the
barrier is somewhat uncertain. It depends on the definition of the collective
coordinate q and the model for the potential energy. For simplicity, we have
put here q0 = 1.0.

For potential (4) one can define the stiffness C = d2Epot/dq
2 and the

frequency of harmonic vibrations ω0 =
√

C/M . In the present work, we
fix ℏω0 = 1.0 MeV, which is close to the frequency of collective vibrations
calculated for 224Th in [10] within the microscopic linear response theory.
Then, for the mass parameter we will have the deformation and temperature-
independent value

M =
C

ω2
0

=
4Vb

ω2
0q

2
0

. (5)

For the friction coefficient γ̄, we use a slightly modified approximation of [10]

γ̄

M
= 0.6

T 2 + ℏ2ω2
0/π

2

1 + T 2/40
. (6)

For the temperature, we consider two options: constant temperature regime
and constant energy regime. In a constant temperature regime, the temper-
ature is time-independent, related to the initial excitation energy E∗ by the
Fermi-gas relation, aT 2 = E∗, where a is the level density parameter of Töke
and Światecki [11]. The fission width calculated in a constant temperature
regime will be denoted as Γf(T ).

At small excitations, the temperature varies with deformation and time,
and there is no reason to consider it constant. So, it is adjusted to the local
excitation energy on each integration step by relation (3). Correspondingly,
the fission width calculated in a constant energy regime is denoted as Γf(E).

The fission width, Γf , is defined assuming the exponential decay of the
number of “particles” in the potential well

P (t) = e−Γf t/ℏ → Γf = −ℏ
lnP (t)

t
. (7)

By solving the Langevin equations, one will get the set of time moments tb,
at which some trajectories would cross the barrier. From this information,
one can find the probability P (t) and the fission width Γf , see [12].
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The Markovian fission width Γf(T ) calculated by Eqs. (1), (4), (7) is
plotted as a function of the damping parameter η in the right part of Fig. 3.
To present the results in a broader range of parameters, the damping pa-
rameter η in these calculations was considered as a free parameter.
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Fig. 3. Left: The two-parabolic potential (4) and few examples of the dynamical
trajectories. Right: The fission width as the solution of Eqs. (1), (4), (7) calculated
at constant temperature (open dots), and the Kramers approximations (8) for high
and low damping limits.

For the comparison, we also show the Kramers decay width ΓHV, ΓLV in
limits of high and low viscosity (friction) [13]

ΓHV =
ℏω0

2π
e−Vb/T

(√
1 + η2 − η

)
, ΓLV =

ℏγ̄
M

Vb

T
e−Vb/T . (8)

As one can see, the dependence of Γf(T ) on η is rather complicated.
The fission width Γf(T ) grows as a function of η in the low damping region
(η < 0.1). In the high damping region (η > 0.2), the fission width Γf(T )
decreases as a function of η.

In nuclear systems, the Markovian assumption is often too restrictive.
We thus have to generalize the above Langevin equations to allow for finite
memory effects. They read as [14]

dq

dt
=

p(t)

M
,

dp

dt
= −∂Epot

∂q
−

t∫
0

dt′
γ (t− t′) p (t′)

M
+ ζ , γ

(
t− t′

)
≡ γ̄

τ
e−

t−t′
τ . (9)

The extension consists in allowing the friction to have a memory time, i.e.,
the friction reacts on past stages of the system, what is called a retarded
friction.
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The random numbers ζ in (9) are the normally distributed random num-
bers with the properties ⟨ζ(t)⟩ = 0, ⟨ζ(t)ζ(t′)⟩ = e−|t−t′|/τ/τ , where τ is the
memory (or relaxation) time. In the limit of ω0τ ≪ 1, one recovers the
Markovian limit of nuclear fission dynamics, i.e., when the friction force is
simply given by γq̇(t). The random numbers ζ(t) in (9) satisfy the equation

dζ(t)

dt
= −ζ(t)

τ
+

ξ

τ
, (10)

and are used in the description of the so-called Ornstein–Uhlenbeck pro-
cesses.

The fission width Γf(E) is shown as a function of the damping parame-
ter η in the top part of Fig. 4 both for small and large excitation energies,
E∗ = 10, 25, and 60 MeV, for a few values of the relaxation time. Besides
τ = 0, we choose in calculations below the two values of τ , τ = 5×10−22 sec
and τ = 10−21 sec.
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Fig. 4. Top: The dependence of the fission width Γf(E) (solid) and approxima-
tion (11) (dashed) on the damping parameter η for a few values of the relaxation
time τ , τ = 0, τ = 5× 10−22 sec, τ = 10−21 sec and the initial excitation energies
E∗

in = 10, 25, and 60 MeV. Bottom: The dependence of the fission width Γf(E)

(solid) and approximation (11) (dashed) on the relaxation time τ for a few values
of the damping parameter η, η = 0.1, 0.5, and 1.0.
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The results of Langevin calculations satisfying the energy conservation
condition are shown in Fig. 4 by solid lines. The fission width Γf(E) grows
as a function of η and decreases as a function of τ in the low damping region.
The tendency is the opposite in the high damping region; the fission width
Γf falls as a function of η and increases as a function of τ . Such dependence
is common both for small and large excitation energies.

In the bottom part of Fig. 4, the fission width Γf(E) (solid lines) is shown
as a function of the relaxation time τ for a few fixed values of the damping
parameter η. The bottom part of Fig. 4 confirms the above conclusion:
the dependence of fission width Γf on η and τ is opposite in low and high
damping regions.

For the comparison, we show by dashed lines in Fig. 4 the available
analytical approximation for Γf(T, τ) [14–16]

1

Γeff
=

1

ΓLV
+

1

ΓHV
, ΓLV(τ) =

ΓLV(0)

1 + ω2
0τ

2
, ΓHV(τ) =

ℏλ
2π

e−Vb/T ,

(11)
where λ is the largest positive solution of the secular equation

λ3 +
λ2

τ
+
( γ̄

Mτ
− ω2

0

)
λ− ω2

0

τ
= 0 . (12)

As can be seen, the results of Langevin calculations for Γf(E) are smaller
than the analytical estimate (11) both in low and high damping limits.
The ratio Γf(E)/Γeff is close to 1 at E∗ = 60 MeV and close to 0.1 at
E∗ = 10 MeV.

5. Summary

The calculated mass distributions of fission fragments of super-heavy
nuclei from 268Hs to 308122 demonstrate a three-four peaks structure of mass
distributions. In light super-heavies, we see the dominant mass symmetric
peak at AF ≈ 140. With increasing mass and charge numbers of fissioning
nuclei, the highly asymmetric peaks at AH ≈ 208 appears. In 290−296Lv
and 290−296Og, the three peaks in FFMD are approximately of the same
magnitude at E∗ = 0.

The investigation of memory effects in nuclear fission is carried out. The
calculations presented here offer complete information on the dependence
of memory effects on all essential parameters, the relaxation time τ , the
damping parameter η, and the excitation energy E∗.

It turned out that the fission width Γf(E) calculated under the constant
energy requirement is generally smaller than that calculated in the constant
temperature regime, Γf(T ), or the Bohr–Wheeler approximation.
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The dependence of the fission width Γf(E) on the relaxation time τ is
very sensitive to the damping parameter η. Such dependence is common
both for small and large excitation energies. In the low viscosity region, the
fission width Γf(E) grows as a function of η and decreases as a function of τ .
In the high-viscosity region, the tendency is the opposite.

The authors are grateful to Prof. K. Pomorski for the valuable discussions
and presentation of our results at the Zakopane Conference.
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