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The chiral effective field theory (EFT) and ab initio few- and many-
body methods play a very important role in precision nuclear theory. In
this contribution, the current status of the chiral nuclear forces derived
by the Low Energy Nuclear Physics International Collaboration (LENPIC)
is discussed and the role of three-nucleon continuum calculations within
LENPIC is described.
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1. Introduction

The structure of the nuclear Hamiltonian is the central problem of nu-
clear physics. This Hamiltonian is dominated by pair-wise interactions,
which can be studied already in two-nucleon systems. The necessity for
the three-nucleon force (3NF) was realized when three-nucleon (3N) bound
states were calculated exactly [1–3] using early nucleon–nucleon (NN) po-
tentials [4–8], later replaced by semi-phenomenological NN potentials which
described the NN data with high precision (χ2/datum ≈ 1) [9–11]. Subse-
quent calculations of the four-nucleon (4N) bound state [12, 13] confirmed
these findings and the observed underbinding of the 3N and 4N bound states
was removed when the nuclear Hamiltonian was supplemented by a 3NF
model, such as the Tucson–Melbourne (TM) [14] or the Urbana IX [15].

The bound states did not provide enough information about the proper-
ties of the 3N Hamiltonian and it became clear that 3N scattering observ-
ables were necessary to shed more light on this problem. It was thus very
important that in the early 1990s numerical solutions of the 3N Faddeev
equations for nucleon–deuteron scattering with the inclusion of realistic 3N
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forces were prepared by Henryk Witała and collaborators. This achievement
had a great impact on the field of few-nucleon physics and enabled many
experimental groups to perform measurements sensitive to the structure of
the 3N force. All essential results obtained before the mid-1990s for the 3N
system were summarized in an important review paper [16].

The calculations of the elastic nucleon–deuteron scattering reaction and
the nucleon-induced deuteron breakup process performed with the semi-
phenomenological NN forces [9–11] revealed (see, for example, Refs. [16–
18]) in general good agreement of theoretical predictions with data for 3N
scattering observables at the incoming nucleon energies below approximately
30 MeV. At higher energies, however, the theoretical predictions based on
NN forces only did not fully describe the data. For example, the agreement
between theory and data in the minimum of the elastic scattering cross sec-
tion was restored, when the 3NF models [14, 15] were additionally employed
in the 3N calculations [17–20]. For many spin observables in elastic nucleon–
deuteron scattering, none of the available combinations of 2N and 3N forces
could describe the data, although the theory predicted large 3NF effects,
see, for example, Refs. [18, 21]. The situation was not improved by the re-
sults obtained within the consistent relativistic framework [24, 25], because
the cross sections and polarization observables were only slightly changed
by including relativity [24, 25].

All these studies proved that the Tucson–Melbourne and Urbana IX 3NF
models had severe limitations and a major step forward required 3NF models
consistent with 2N potentials, containing also some number of short-range
components with a richer spin structure. This could be realized only within
the chiral effective field theory.

2. Nucleon–deuteron scattering with chiral nuclear potentials

Low-energy 3N scattering was investigated for the first time with chi-
ral next-to-next-to-leading order (N2LO) 2N and 3N forces in [26]. Later,
in Refs. [27, 28], 2N forces were derived at next-to-next-to-next-to-leading
order (N3LO) of the chiral expansion and could be used in a wider energy
range. It turned out that experimental phase-shifts were described by these
potentials equally well as by the semi-phenomenological 2N forces [29, 30].
The N3LO contributions to the 3NF developed in Refs. [31, 32] do not con-
tain any additional unknown parameters so the full N3LO 3NF possesses
only two low-energy constants. In order to fix these parameters, usually the
experimental triton binding energy and at least one 3N scattering observ-
able are necessary. The latter could be, for example, the nucleon–deuteron
doublet scattering length but recently, the very precise experimental data
for the proton–deuteron differential cross section at the proton laboratory
energy of 70 MeV from Ref. [23] is chosen.
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The first-generation chiral 2N and 3N forces were tested in the calcu-
lations of the elastic nucleon–deuteron scattering observables [33]. It was
found that non-local regularization applied directly in momentum space re-
sulted in strong finite-cutoff artefacts in the predictions for higher energies,
which precluded employing such forces in further 3N continuum calculations.
This problem was solved in more recent generations of 2N chiral potentials
prepared up to next-to-next-to-next-to-next-to-leading order (N4LO). While
the first of them [34, 35] employed a local coordinate-space regularization of
the one- and two-pion exchange contributions, the newest one from Ref. [36]
uses a momentum-space version of the local regulator. In Ref. [37], the au-
thors describe the key features of these semi-local momentum-space regular-
ized (SMS) NN potentials and demonstrate their outstanding performance
in the 2N sector. In particular, the SMS NN potentials of Ref. [36] at the
highest available order (the so-called “N4LO+”) provide, for the regulator
values Λ = 450 and 500 MeV, a nearly perfect description of mutually com-
patible neutron–proton and proton–proton scattering data below the labo-
ratory nucleon energy Elab = 300 MeV with χ2/datum = 1.01. This places
these potentials among the most accurate and precise NN interactions to
date.

A comparable level of precision beyond the NN sector is currently not
achieved due to both computational limitations and unavailability of consis-
tently regularized many-nucleon forces beyond the third order of the chiral
EFT expansion. This problem is also addressed in Ref. [37]. The 2N and 3N
potentials have to be regularized in order to obtain a well defined solution
of the Faddeev equations. High-momentum components in the integrals ap-
pearing in the iterations of the Faddeev equation produce contributions with
positive powers and logarithms of the cutoff parameter Λ, which diverge for
Λ → ∞ and are supposed to get absorbed by the available short-range inter-
actions. The momentum dependence of such contact contributions in a 3N
force is, however, severely constrained by the spontaneously broken chiral
symmetry of QCD. This makes the consistent regularization of 2N and 3N
potentials very difficult. The authors of Ref. [37] point to possible solutions
to this problem but this goal has not been achieved yet.

In the meantime, a series of detailed investigations of low-energy three-
nucleon scattering observables and selected properties of light and medium-
mass nuclei at low orders in chiral EFT has been performed by the LENPIC
Collaboration [38] using different variants of chiral EFT NN interactions
[34–36] with and without the 3N force at N2LO [26, 39], see Refs. [40, 41, 43–
45]. Some results calculated up to 2019 have been also reported in conference
proceedings, see, for example, [46, 47]. These studies provide the explicit and
implicit (that is based on the discrepancies between calculated observables
and experimental data) verification of the 3NF effects, which are compatible
with the expected size of N2LO corrections, in agreement with the Wein-
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berg power counting [49, 50]. Additionally, the results give insights into the
convergence pattern of chiral EFT for nuclear systems and implications for
uncertainty quantification. In Ref. [45], selected nucleon–deuteron elastic
scattering and breakup observables have been calculated. Further results
have included properties of the A = 3 and A = 4 nuclei as well as spectra
of p-shell nuclei up to A = 16 using the SMS potentials at leading, next-to-
leading and N2LO from Ref. [36] in combination with the 3N force at N2LO
regularized in the same way as the SMS NN potentials. While the obtained
predictions at N2LO proved to be generally consistent with experimental
data within errors, a systematic overbinding of nuclei was found starting
from A ≈ 10 and increasing with A. Moreover, a slight underprediction was
observed for the 4He structure radius, which however was still consistent
with the experimental value at the 95% confidence level.

The main purpose of the most recent LENPIC paper [48] was to shed
light on the origin of the significant (even at the 95% confidence level)
overbinding of heavier p-shell nuclei at N2LO found in Ref. [45]. To clarify
whether this discrepancy is related to deficiencies of the NN force at N2LO
or rather has to be resolved by higher-order corrections to the 3NF, the au-
thors have performed a series of calculations based on the higher-order SMS
NN potentials (N3LO, N4LO, and N4LO+) in combination with the 3NF at
N2LO. While the obtained predictions are still accurate only at the N2LO
level due to the missing contributions to the many-body forces at N3LO and
beyond, the overbinding issue has been resolved by including higher-order
contributions to the NN force. Furthermore, the results of Ref. [45] have
been extended to heavier nuclei by performing calculations for the oxygen
and calcium isotope chains and studying the convergence pattern of chiral
EFT for the corresponding charge radii. Additionally, the large generated
set of calculated energy levels has enabled the authors to perform a more
detailed error analysis of the correlated excitation energies of the considered
nuclei.

3. Neutron analyzing power in the deuteron breakup process

In the following, we give an example of a typical study in the 3N system
and show an analysis of the sensitivity of the neutron analyzing power Ay(n)
to details of the chiral interaction. We choose the incident neutron energy of
E = 135 MeV. Our predictions are obtained within the Faddeev scheme [16],
using the SMS NN potential [36] at N2LO or N4LO+, in both cases sup-
plemented by the N2LO three-nucleon interaction [45]. We use regulator
values Λ = 400, 450 or 550 MeV. By finding the transition amplitude for the
breakup process, we are able to predict the nucleon analyzing power Ay(n)
at any kinematically allowed configuration. In the case of the three-body
final state, such a configuration is unambiguously defined by five kinematical



Few-nucleon Systems for Nuclear Physics 4-A23.5

variables which we choose to be two pairs of angles (polar and azimuthal)
corresponding to the momenta of the two outgoing neutrons (θ1, ϕ1, θ2, ϕ2)
and additionally a position (S) on the kinematical S-curve [16] which fixes
energies of the two detected neutrons. We studied approximately five million
kinematical configurations, what allows us to recognize at which configura-
tions various aspects of chiral dynamics are important.

To illustrate this, we compute, for each point on a (θ1, θ2) grid, the
differences

δ400−550(θ1, θ2, ϕ2, S) ≡ (Ay(n))
400(θ1, θ2, ϕ2, S)

−(Ay(n))
550(θ1, θ2, ϕ2, S) (1)

and

δN2LO−N4LO+(θ1, θ2, ϕ2, S) ≡ (Ay(n))
N2LO(θ1, θ2, ϕ2, S)

−(Ay(n))
N4LO+(θ1, θ2, ϕ2, S) , (2)

where the upper index of Ay(n) shows which order of the NN interaction or
which cut-off value is used. If not written explicitly, N4LO+ or Λ = 450 MeV
is applied. Note that in that study we restrict ourselves to ϕ1 = 0◦ (and
thus skip ϕ1 in the definitions above), but in general, a study of polarization
observables can be extended also to ϕ1 ̸= 0◦.

Next, we find, for given θ1 and θ2, maxima of δ400−550(θ1, θ2, ϕ2, S) and
δN2LO−N4LO+(θ1, θ2, ϕ2, S) over two remaining variables (ϕ2 and S), obtain-
ing corresponding ∆(θ1, θ2)

400−550 and ∆(θ1, θ2)
N2LO−N4LO+.

These two quantities are shown in Fig. 1. ∆(θ1, θ2)
400−550 is small and

changes from ≈ −0.10 up to ≈ 0.13. The dependence of ∆(θ1, θ2)
400−550

on θ1 and θ2 is clearly seen — the highest values are present for the part of
the phase space where θ1 < 60◦ and θ2 lies within the range (30◦, 150◦).
In turn, for most configurations with θ1 below approx. 60◦ and θ1 <
140◦, (Ay(n))

550 is smaller than (Ay(n))
400 which results in a negative

∆(θ1, θ2)
400−550. In other parts of the phase space, ∆(θ1, θ2)

400−550 remains
of the order of a few percent demonstrating a small sensitivity of the neutron
analyzing power to the cut-off value. In the case of ∆(θ1, θ2)

N2LO−N4LO+,
we see two separate areas in the θ1–θ2 plane with relatively big positive
values of ∆(θ1, θ2)

N2LO−N4LO+. These areas are adjacent to regions where
∆(θ1, θ2)

N2LO−N4LO+ is negative and smaller than −0.04. In other parts of
the phase space both N2LO and N4LO+ NN interactions, supplemented by
the N2LO 3NF, lead to very similar predictions.

Having in mind the possible experimental verification of our predic-
tions, in Fig. 2 we show again ∆(θ1, θ2)

400−550 and ∆(θ1, θ2)
N2LO−N4LO+

but now obtained after imposing additional restrictions on the cross sec-
tions (≥ 0.01 [mb sr−2 MeV−1]), the analyzing powers (|Ay(n)| > 0.3) and
the kinetic energies of detected neutrons (E ≥ 10 MeV). These conditions
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Fig. 1. ∆400−550 (left) and ∆N2LO−N4LO+ (right) at the incoming nucleon labora-
tory kinetic energy Elab = 135 MeV. θ1 and θ2 are polar angles of two outgoing
neutrons, calculated with respect to the initial beam. The kinematically forbidden
areas in the θ1–θ2 plane are marked in white.

significantly reduce the number of allowed configurations, what is reflected
in Fig. 2 by a large white area. However, the assumed restrictions do not af-
fect basically the magnitudes of ∆(θ1, θ2)

400−550 and ∆(θ1, θ2)
N2LO−N4LO+,

which span the range between (−0.06, 0.10) and (−0.07, 0.09), respectively.
In the case of the cut-off dependence of Ay(n), the areas characterized by ex-
treme values of ∆(θ1, θ2)

400−550 are small and in the bulk of the phase space
(Ay(n))

400 ≈ (Ay(n))
550. The ∆(θ1, θ2)

N2LO−N4LO+ behaves differently and
takes values close to extremal in a big part of the allowed area. However,
on the absolute scale, the ∆(θ1, θ2)

N2LO−N4LO+ remains small revealing only
small differences between calculations based on the N2LO and N4LO+ NN
interactions.
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Fig. 2. ∆400−550 (left) ∆N2LO−N4LO+ (right) at the incoming nucleon laboratory
kinetic energy Elab = 135 MeV. Compared to Fig. 1, the additional thresholds
for the energies of detected neutrons, the magnitude of the cross sections, and
the magnitude of the analyzing powers Ay(n) have been imposed (see the text for
specific values).
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In Fig. 3, we show predictions for two example configurations which con-
tribute to Fig. 2. We give results from all the models used to build ∆400−550

and ∆N2LO−N4LO+. For the configuration shown in the left panel of Fig. 3,
in the maximum of Ay(n) around S = 80 MeV, a change of the regulator
value from Λ = 400 MeV to Λ = 550 MeV raises (Ay(n))

N4LO+ by 0.068.
We also see that increasing the chiral order of the two-nucleon component
of the interaction from N2LO to N4LO+ decreases Ay(n) by the same value
of 0.068. The position of the black solid curve (Λ = 450 MeV) with re-
spect to predictions obtained for Λ = 400 MeV and Λ = 550 MeV reveals
more or less linear dependence of Ay(n) on Λ for this configuration. In
contrast, an example given in the right panel of Fig. 3 shows the case for
which there is a strong sensitivity to the regulator value used, while the
change of the order of the NN interaction has a much smaller impact on
Ay(n). In some other cases not shown in this contribution, for example, for
the configuration specified by choosing θ1 = 92.5◦, ϕ1 = 0◦, θ2 = 22.5◦, and
ϕ2 = 177.5◦, the cut-off effects and dependence on the chiral order of the
NN force is similar for 50 MeV< S < 120 MeV, leading to |∆400−550| ≈
|∆N2LO−N4LO+| ≈ 0.04, but the nonlinear dependence of Ay(n) on Λ is
observed, as (Ay(n))

400 ≈ (Ay(n))
450 < (Ay(n))

550. Moreover, at the min-
imum of Ay(n) around S = 145 MeV all the N4LO+ based predictions
overlap, while the N2LO results are greater by 0.07.
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Fig. 3. (Color online) The neutron analyzing power Ay(n) at the incoming nucleon
laboratory kinetic energy Elab = 135 MeV for the configuration defined by θ1 =

17.5◦, ϕ1 = 0◦, θ2 = 17.5◦, ϕ2 = 2.5◦ (left) and by θ1 = 47.5◦, ϕ1 = 0◦, θ2 =

62.5◦, ϕ2 = 2.5◦ (right). Predictions based on the complete (NN+3NF) N2LO,
Λ = 450 MeV interaction are represented by the black dotted curve. Predictions
based on the N4LO+ NN interaction supplemented with the N2LO 3N force with
Λ = 400, 450, and 550 MeV are given by the red dash-dotted, black solid, and blue
dashed curves, respectively.
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The presented above example of a complex pattern of polarization ob-
servables related to the cut-off dependence and to the interaction model
used, demonstrates the sensitivity of the deuteron breakup process to de-
tails of chiral dynamics. We are aware that the experimental investigations
aimed at examining the results presented here are challenging but they are
not impossible with the current experimental technology.

4. Summary

Theoretical investigations of three-nucleon systems have been performed
by Henryk Witała and collaborators since the late 1980s. These studies
are based on rigorous solutions of the 3N continuum Faddeev equations in
momentum space for energies below the pion production threshold. The
calculations involve description of cross sections and many polarization ob-
servables in elastic nucleon–deuteron scattering as well as in nucleon-induced
deuteron breakup processes. The aim of these efforts has been always to un-
derstand the structure of nuclear forces and (later) the properties of the
electroweak current operators. The investigations of the 3N force effects
have been especially important and led to very intense collaboration with
many experimental groups. Recently, we have concentrated on the forces
derived within chiral EFT by the LENPIC Collaboration.

In particular, the most advanced SMS NN interactions have been re-
cently used [48] to analyze 3N scattering observables and selected proper-
ties of light and medium-mass nuclei. To this end, Hamiltonians compris-
ing higher-order nucleon–nucleon potentials in combination with the three-
nucleon force at N2LO were first determined using the A = 3 binding ener-
gies and selected nucleon–deuteron cross sections as input. The Hamiltoni-
ans were then used to calculate other nucleon–deuteron scattering observ-
ables, spectra of light p-shell nuclei, and ground-state energies of nuclei in
the oxygen isotopic chain from 14O to 26O as well as 40Ca and 48Ca. These
new results give insights into the convergence pattern of chiral EFT for light-
and medium-mass nuclei.

The accuracy of these studies is limited by the fact that the correspond-
ing 3N force is only available at N2LO. At this chiral order, the predicted
nucleon–deuteron scattering observables and ground-state energies of nuclei
with A ≤ 12 agree with the data within truncation error. Work on con-
structing consistent SMS 3N potentials beyond N2LO is in progress and
will open an avenue for performing high-accuracy chiral EFT calculations
beyond the 2N system.

Meanwhile, we show a typical for our Cracow group investigation of the
neutron analyzing power Ay(n) in the neutron-induced deuteron breakup
reaction at the incident neutron energy of E = 135 MeV. The study gives
information about various aspects of chiral dynamics.
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