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Machine Learning algorithms trained on Monte Carlo simulated data
are proposed for the classification of experimental data from an Optical
Time Projection Chamber. In this contribution, we describe the simulation
procedure to mimic experimental data, as well as the algorithms chosen for
nuclear physics cases of β-delayed (multi)-particle emission and two-proton
radioactivity. A proof of principle of the whole procedure is discussed for
the decay of 11Be.
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1. Introduction

Time Projection Chambers (TPC) provide a wide range of applications
in nuclear physics. One of them is the study of the radioactive decay of exotic
nuclei emitting charged particles. Triggered by the discovery of two-proton
radioactivity [1, 2], a powerful technique for such studies was developed at
the University of Warsaw based on the use of a TPC with optical read-
out (OTPC) [3, 4]. In gas mixtures based on Ar, He, and small amounts
of CF4, the visible light produced in the amplification stage of the detector,
composed of several gas electron multipliers, is registered by a CCD camera
and a photomultiplier tube (PMT). The combination of this information
allows for the full 3D reconstruction of the tracks of the charged particles
emitted by the nuclei [5].

The search for rare events in decay experiments with a TPC is many
times hampered by the difficulties in classifying the registered signals. The
identification of rare decay branches of the order of 10−3–10−6 among the
huge amount of data typically recorded may be like looking for a needle in
a haystack. In addition, sometimes the fingerprint of such an exotic branch
happens to be very similar to some background or to other decay branches,
which causes difficulties in standard classification and analysis of data.
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Machine Learning (ML) techniques are increasingly used in nuclear and
particle physics, and they have already proved their applicability to other
TPC set-ups, such as the Active-Target Time Projection Chamber (AT-TPC)
[6, 7]. In the present work, we use supervised algorithms based on Monte
Carlo (MC) simulations to classify OTPC events. The OTPC signals used
for training the ML models are simulated by means of the Geant4 simula-
tion package [8], as will be detailed in the next section. Geant4 simulations
have already been employed to train supervised classification algorithms in
other nuclear physics setups (see Refs. [9, 10] for recent examples). MC
simulations are a convenient way of training ML models in situations where
there is a lack of labeled experimental data or the available statistics for the
different classes of events is very unbalanced, as in β-delayed multi-particle
emission or two-proton radioactivity studies, due to the small branching
ratios associated with these events.

2. Monte Carlo simulations

Geant4 is a simulation toolkit for particle transport and interaction be-
tween matter and radiation. The energy loss of charged particles is simu-
lated based on condensed history models, which rely on the evaluation of
the energy loss in steps, based on stopping power data. Computationally
this is more efficient than simulating every single interaction, an approach
that, in addition, suffers from the scarcity of cross-section data required for
all the materials involved. In this work, we use the version 10.5 of Geant4
and the energy loss (for non-relativistic charged particles, in our case) is
evaluated by the processes G4hIonisation (for protons) and G4ionIonisation
(for generic ions and α particles) by means of the models G4BraggModel
and G4BraggIonModel, respectively. For user-defined materials, as it is in
our case, both models employ the ICRU49 parameterisation [11]. The final
energy loss is computed after considering fluctuations, in order to take into
account the straggling effect associated with the stochastic character of the
process.

For the simulation of OTPC events, the proper gas composition is de-
fined, with the associated temperature and pressure conditions. The electric
field inside the chamber volume is considered as well. The simulated energy
loss is stored together with spatial information about the point where it was
deposited. The spatial coordinates are defined as a random position between
the start and the end of the computation step (of the order of 1 µm). Exper-
imentally calculated spatial resolutions are applied, with different values for
x–y (corresponding to the CCD camera) and z (corresponding to the PMT).
The experimental pixel size of the CCD and the binning of the PMT signal
are taken into account to project the energy loss information and spatial
coordinates into 16-bit unsigned PNG images (x–y) and one-dimensional
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arrays (z). Experimental noise distributions are sampled to add this effect
to both output files, thus mimicking the experimental data features. An
illustration of the energy loss simulation and projection outputs is shown in
Fig. 1.

Fig. 1. Example of energy loss simulation in 3D with the corresponding projections
in x–y and z, mimicking the CCD image and the PMT signal, respectively. Exper-
imental spatial resolutions and noise distributions are taken into consideration.

3. Machine Learning approach

The most natural way of applying ML methods with images relies on
the use of Convolutional Neural Networks (CNN), as in previous approaches
with other TPCs [6]. However, such algorithms are computationally very
demanding and typically complex predefined models for pattern recognition
are used. In our approach instead of using images, the three projections
(in x, y, and z) from CCD and PMT are used. In fact, the full projections
are not needed, and we just consider some parameters that help to describe
and characterize such projections, as the length, the mean, the kurtosis
or the skewness. This allows us to adopt computationally simpler models.
In particular we use the very efficient extreme gradient boosting algorithm
(XGboost) as well as Neural Networks (NN) algorithms, based on the imple-
mentations in the Keras deep learning library written in Python [12]. In both
cases, standard ML techniques like k-fold cross validation and grid search
are applied to optimize the models and evaluate their performance.

4. Application to the decay of 11Be

We have applied these new methods to the study of the decay of 11Be,
the most promising candidate to observe the rare β−-delayed proton emis-
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sion. The β-delayed charged-particle emission of 11Be is dominated by the
α branch [13] and the possible proton branch is expected to be several or-
ders of magnitude weaker. Evidence of such a proton branch was found in
Ref. [14], recently supported by the determination of a near-threshold proton
resonance in 11B [15, 16].

The OTPC group performed an experiment at ISOLDE-CERN looking
for this exotic decay branch. The gas mixture was chosen to measure the
full α spectrum needed for normalization of the possible proton branch. In
the analysis, it was found that, in such conditions, the possible low-energy
protons are hardly distinguishable from low-energy α particles by energy loss
fits [17], as illustrated in Fig. 2 (c). In order to shed light on this problem,
we have trained ML models based on MC uniform energy distributions of
α-7Li and proton-10Be in the range of 0–600 keV. A confusion matrix of the
validation of these models is shown in Fig. 2 (a), showing an accuracy rate
close to 90% to classify α and proton events. We have further investigated
the performance of the models by applying them to a simulated data set of
events sampled from the experimental α distribution and from the expected
proton distribution. An accuracy rate above 80% is obtained, as shown in
Fig. 2 (b). These accuracy rates together with the probability of belonging
to each of the two classes given by the models will be used to determine a
branching ratio for proton emission from experimental data.
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Fig. 2. Confusion matrices of the performance of the XGBoost model for the valida-
tion set after training on uniform energy distributions [panel (a)] and for a data set
with realistic energy distributions [panel (b)]. In panel (c), we show MC simulations
of the full track projection of proton and α emission for the OTPC experiment of
11Be, considering the corresponding recoils and center-of-mass energy of 150 keV.

Finally, as the next steps, we are working in the inclusion of the β−-de-
layed tritium channel, also energetically open in the decay of 11Be, and we
plan to optimize the models to enhance the accuracy rate at low energies.
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