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We discuss the possible manifestation of pairing dynamics in nuclear
collisions beyond the standard quasi-static treatment of pairing correla-
tions. These involve solitonic excitations induced by pairing phase differ-
ence of colliding nuclei and pairing dynamic enhancement in the di-nuclear
system formed by merging nuclei.
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1. Introduction

Pairing correlations play a crucial role in our understanding of the prop-
erties of nuclear systems, ranging from atomic nuclei to neutron stars [1].
The importance of pairing correlations, however, does not originate from
their contribution to the energy of nuclear systems. Indeed, the pairing en-
ergy is only a small fraction of the total energy of an atomic nucleus. This is
because the value of a pairing gap, which sets the typical energy scale, does
not exceed 3% of the Fermi energy. At subnuclear densities, characteristic
for the neutron star crust, it may reach at most about 5%. The importance
of pairing correlations lies in the modification induced at the Fermi surface,
which produces a gap in the single-particle spectrum. Consequently, it facil-
itates large-amplitude nuclear motion by suppressing dissipative effects due
to single-particle excitations. Thus, the main effect originates from the gap
size, which is a single number associated with the Cooper pair correlation
energy and can be generated within the BCS theory [2]. This description is
satisfactory if one describes a situation close to an adiabatic limit of nuclear
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motion. In this case, one effectively describes quantum evolution as going
through almost static solutions obtained within the static BCS equations. In
the extreme limit of cranking approximation, the evolution of pairing is just
provided by instantaneous static gap values, and the pairing gap is simply
a function of collective variables describing large amplitude nuclear motion.

The question which naturally arises is whether this approach is always
correct. Recent theoretical investigations of pairing dynamics indicated that
even when a nucleus evolves slowly during the fission process, its motion
hardly fulfils adiabatic criteria and the pairing field fluctuates rapidly in time
and space [3]. Therefore, it is crucial to specify the conditions where the
adiabatic approach must be abandoned and to understand possible manifes-
tations of pairing dynamics (see e.g. Refs. [3–7] for the description of pairing
beyond the adiabatic approximation).

2. Nuclear collisions and pairing dynamics

Nuclear processes expected to elude adiabatic description are nuclear
collisions, even at energies close to the Coulomb barrier. The best examples
are provided by nuclear collisions of medium-mass nuclei or those involving
heavy targets. The latter are essential in superheavy element synthesis [8].

What can one expect concerning pairing dynamics in the case of a colli-
sion? We describe pairing as a pairing field constituting an order parameter
emerging from U(1) symmetry breaking. In that case, two obvious possibil-
ities arise, defined by two fundamental modes associated with pairing: the
Goldstone mode and Higgs mode (see Fig. 1). They are associated with vari-
ations in the phase and the magnitude of the pairing field, respectively. The
Goldstone mode, in its most direct realization, leads to harmonic vibration
of phase ϕ(r, t) ∝ k·r−ωt, giving rise to Anderson–Bogoliubov phonons (see
e.g. [9, 10] and references therein). However, in the atomic nucleus, due to
its small size, such modes cannot be unambiguously defined1. The mani-
festation of the Goldstone mode can also appear due to perturbation of the
nuclear pairing phase induced by dynamics of collision. This situation may
occur in two regimes. The first one corresponds to the case when two nuclei
approach each other at subbarrier energies, and the effective phase difference
of their pairing fields induces tunnelling of nucleons [11]. When a collision
occurs above the barrier, a solitonic excitation is generated between colliding
nuclei (see Fig. 1) [4]. These two regimes have been identified and studied
in ultracold atomic gases [12]. In nuclear systems, the first one has been
investigated as a nuclear manifestation of the Josephson effect. Recently, it
has been found that an oscillating flow of neutrons occurs (analogue to the

1 The situation is slightly different in the neutron star crust where such modes are
predicted to show up in neutron superfluid surrounding nuclear impurities [10].
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Fig. 1. Left: Schematic figure showing the Goldstone and Higgs modes associated
with symmetry breaking due to the emergence of pairing. Right: Snapshot from
the TDDFT simulation of the 96Zr + 96Zr collision at Ecm = 187 MeV with the
opposite phases of pairing fields. The upper panel shows density distributions
for protons (upper part) and neutrons (lower part). The lower panel shows an
analogous magnitude of pairing field distributions with solitonic excitation visible
between colliding nuclei. Details of calculations are presented in Ref. [5].

AC Josephson junction) during a collision of medium-mass nuclei [13]. The
other regime, leading to solitonic excitation, has been identified in Ref. [4].
The difference between these two regimes lies in the expected outcomes. In
the first case, the main observable is the enhanced nucleon transfer, whereas
in the other regime, one expects an additional energy barrier preventing
the merging of colliding nuclei. This additional energy barrier scales with
the phase difference between colliding nuclei ∆ϕ like sin2(∆ϕ/2), which was
confirmed in the TDDFT calculations [4].

The spontaneous symmetry breaking generates also another effect, which
leads to pairing magnitude vibrations. It can be generated in the ultracold
Fermi gas by tuning the coupling constant in real time, which drives the
system towards the superfluid phase [14]. The characteristic feature of the
Higgs mode is its energy (or frequency of oscillations), which is of the or-
der of the static value of the pairing gap. At first, it may seem that this
mechanism cannot operate in nuclear systems as pairing correlations emerge
from nuclear interaction and cannot be tuned at will. However, the effective
strength of interaction depends on the density of states at the Fermi surface.
This can undoubtedly change once the nuclear shape evolves. In particular,
when two nuclei merge, a new system is formed during a nuclear collision.
The single-particle properties of such, usually very elongated object, are sig-
nificantly different from those of two initial nuclei. It is, therefore, possible
that effectively merging two nuclei creates a system which exhibits pairing
instability [5, 15]. This would correspond to an exponential increase in the
strength of pairing correlations in time. This is indeed the case, as seen
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in Fig. 2. In the figure, the quantity ∆̄n = 1
N

∫
d3r|∆n(r)|ρn(r) has been

shown as a function of time. Here, ρn and ∆n stand for the neutrons den-
sity and pairing field distributions, respectively. N =

∫
ρn(r) d

3r is the total
number of neutrons. The initial pairing of colliding nuclei is very weak but
becomes strongly enhanced after collision showing clearly an instability as
indicated by almost perfectly exponential growth. Although it is tempting
to associate this effect with the excitation of a Higgs mode, one has to be
careful. First, the time scale of the enhancement is by an order of magnitude
longer than the typical time scale of Higgs mode which has to be compa-
rable to ℏ/∆̄n ≈ 200 fm/c. Second, the excitation energy of the system is
rather high. Using the Thomas–Fermi approach [5], one may estimate the
excitation energy related to the neck formation between two nuclei during
the collision. For the reaction presented in Fig. 2, it reads: 20, 27, and
34 MeV for 90Zr+ 90Zr, 90Zr+ 132Sn, and 40Ca+ 208Pb, respectively. These
energies correspond to temperatures which are close to the critical temper-
ature. Therefore, it seems unlikely to associate such a mode with inducing
an actual superfluid phase and it is rather related to the increase of pairing
correlations in a nonequilibrium system [15].

Fig. 2. Magnitude of an average neutron pairing gap ∆̄n in collisions of several
neutron magic nuclei at energies right above the Coulomb barrier (Ecm to static
barrier ratio is shown in the legend). The collision occurs at about t ≈ 400 fm/c.
Details of calculations are presented in Ref. [5].

3. Conclusion

We have discussed two examples of the manifestation of pairing dynamics
which are predicted to occur in nuclear collisions at energies close to the
Coulomb barrier. It is essential to make a systematic assessment of the
importance of these effects and to understand their role in nuclear dynamics,
particularly in the quasifission process.
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