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We present a detailed study of transition form factors for axial vector
meson production via the two-photon fusion process γ∗γ∗ → 1++, with
space-like virtual photons in the initial state and a P -wave axial vector
quarkonium in the final state. In this analysis, we employ the formalism
of light front quarkonium wave functions obtained from a solution of the
Schrödinger equation for a selection of interquark potentials for the QQ̄
interaction.
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1. Introduction

The coupling of axial vector mesons to virtual photons is described
by three invariant γ∗γ∗ transition form factors. The helicity amplitudes
M(λ1, λ2, λA) = eµ(λ1)e

ν(λ2)MµνρE
∗(λA) are encoded in the amplitude
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Here, q1, q2 are the four-momenta of photons, and M is the mass of the
axial meson. We will discuss only the case of space-like photons, and denote
Q2

i = −q2i > 0. We also introduced

G̃µν = εµναβq
α
1 q

β
2 , X = (q1 · q2)2 − q21q

2
2 ,
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and the polarization vectors of longitudinal photons
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The subscripts TT,TL,LT refer to polarizations of photons in the γ∗γ∗

cm-frame. The Bose symmetry (crossing symmetry for Q2
i ̸= 0) entails

that FTT(0, 0) = 0. Off-shell we have FTT(Q
2
1, Q

2
2) = −FTT(Q

2
2, Q

2
1). The

so-called Landau–Yang theorem, which forbids the decay to two photons,
comes as an afterthought. It has no bearing on the TL,LT form factors.
However, the absence of kinematical singularities requires FLT(Q

2, 0) ∝ Q.
A parameter which quantifies the strength of the (off-shell) photon–photon
coupling can be defined as fLT = limQ2→0 FLT(Q

2, 0)/Q and gives rise to
the so-called “reduced width”.

2. Light front wave function representation

In Ref. [1], we have derived the light front wave function (LFWF) repre-
sentation of the three invariant form factors. The latter could be expressed
in terms of just two functions Φ1, Φ2
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The explicit expressions for the helicity FF’s are
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where, ν = (M2 +Q2
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2)/2, and
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Here, we used the shorthand

ΦA = Φ1 + Φ2 , ΦS = Φ1 − Φ2 . (6)

We show the form factors as a function of two virtualities in Fig. 1, while in
Fig. 2 we present our results for a virtual longitudinal and a real transverse
photon. It is common to define an “off-shell width” for one longitudinal and
one transverse photon as
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The transverse photon can be sent to the mass shell, and one obtains the
so-called reduced width

Γ̃ (A) = lim
Q2→0
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which provides a useful measure of size of the relevant e+e− cross section in
the γγ mode. For a QQ̄ state
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Fig. 1. Dependence of form factors FTT(Q
2
1, Q

2
2) and FLT(Q

2
1, Q

2
2) on the two pho-

ton virtualities. Here, we used the LFWF obtained from the power-like potential
model.
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Fig. 2. Form factors FLT(Q
2, 0) for one virtual photon (left panels) and

FLT(Q
2, 0)/Q (right panels). The top panels: our results in the LFWF approach

and the bottom panels: nonrelativistic limit.

In Table 1, we show our results for the χc1(1P ) charmonium state. Going
from the nonrelativistic (NRQCD) to the full light front wave function result,
we observe a substantial reduction of the reduced width.

Table 1. Reduced width.

Potential model mc [GeV] Γ̃ (χc1)NRQCD [keV] Γ̃ (χc1) [keV]
Power-law 1.33 0.97 0.50
Buchmüller–Tye 1.48 0.82 0.30
Cornell 1.84 0.56 0.09
Harmonic oscillator 1.4 1.20 0.53
Logarithmic 1.5 0.72 0.27



Photon–photon Transition Form Factors of Axial Vector Quarkonia . . . 5-A14.5

3. Comments on χc1(3872)

A peculiar axial vector state is the χc1(3872) (also known as X(3872))
situated right at the D0D̄∗0 threshold. It is often conjectured to be a DD̄∗

molecule. Although its interpretation as a χc1(2P ) state is problematic due
to the strong isospin violation in its decay, it certainly can contain a cc̄
component. Indeed, our estimates of the pT distribution of its production
at the LHC [2] suggest that the main production mechanism at large pT
goes via the cc̄ component. It would be interesting to study its production
in a cleaner environment. To this end, note that protons (Z = 1) or nuclei
(Z = 82 for Pb) are a source of quasi-real Weizsäcker–Williams photons,
while for electrons, also longitudinal photons are important. At an electron–
ion collider, one may therefore study a process sketched in Fig. 3. Here, the
photon exchange is associated with a large rapidity gap.

X

γ

γ∗(Q2)

e
e′

p/A

Fig. 3. A Feynman diagram for the production of χc in γ∗γ fusion in an electron–
proton or electron–ion collision.

Can we pin down the cc̄ component of χc1(3872) [3]? For Q2 ≪ 2M2,
longitudinal photons will dominate and the cross section can be written as

Q2dσ (eA→ e′X(3872)A)

dQ2
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αem
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where the effective form factor including transverse photons [4] is found in
Ref. [1]. We assume the Q2-dependence of a cc̄-state in the NRQCD limit,
and a reduced width of Γ̃ = 0.5 keV. This is in line with the limit on the
reduced width from Belle [5] (updated in [6])): 24 eV < Γ̃ (χc1(3872)) <
615 eV. We show our rough estimates in Table 2. Unfortunately, noth-
ing seems to be known about the molecule contribution. Also, hadronic
exchanges can compete with photons and need to be included, although
appropriate cuts on momentum transfers can certainly reduce their contri-
bution.
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Table 2. Cross sections on proton and 208Pb.

√
seN [GeV] σ(ep→ epX) [pb] σ(eA→ eAX) [pb]

50 0.06 60
140 0.16 340

4. Summary

We have derived the LFWF representation of axial meson γ∗γ∗ transi-
tion form factors. These FFs contain valuable information on the structure
of the meson. They also appear as building blocks of charmonium produc-
tion in a kT-factorization approach within the color-singlet approach. The
reduced width of the ground state χc1(1P ), for one longitudinal and one
real photon Γ̃ , is obtained in the ballpark of ∼ 0.5 keV. Electroproduction
of χc1(1P ), χc1(3872) in the Coulomb field of a heavy nucleus may give access
to form factor FLT(Q

2, 0). This is additional information on the structure.
We know how to calculate it for cc̄ states.
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