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We study the exclusive photoproduction of a photon–meson pair with a
large invariant mass, working in the QCD factorisation framework. Explic-
itly, we consider a ρ-meson or a charged π in the final state. This process
gives access to chiral-even GPDs as well as chiral-odd GPDs. We focus
here on the chiral-even sector. The computation is performed at the lead-
ing order and leading twist. We discuss the prospects of measuring them
in various experiments such as the JLab 12-GeV, COMPASS, future EIC,
and LHC (in ultraperipheral collisions). In particular, the high center-of-
mass energies available at collider experiments can be used to probe GPDs
at small skewness ξ. We also compute the polarisation asymmetries with
respect to the incoming photon. The results for an alternative distribu-
tion amplitude (‘holographic’ form) are also compared with the predictions
obtained with an asymptotic distribution amplitude.
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1. Introduction

A new family of 2 → 3 exclusive processes [1–6] has been shown to be
very promising in view of accessing generalised parton distributions (GPDs).
In the present work, we focus on the exclusive photoproduction of a photon–
meson pair with a large invariant mass. Work in this direction has already
been performed in [7] for the case of a ρ-meson in the final state, and in
[8, 9] for a charged pion in the final state. Imposing a large value for the
invariant mass of the photon–meson pair provides the hard scale for em-
ploying collinear QCD factorisation. Recently, QCD factorisation has been
proved for a family of exclusive 2 → 3 processes [10, 11] at the leading twist,
which includes the process we study. The proof of factorisation relies on
the transverse momentum of the outgoing photon/meson to be large rather
than their invariant mass, which is a stricter condition.

On the one hand, one of the main advantages of studying this channel
is that for a transversely-polarised ρ-meson, this process gives access to
chiral-odd GPDs at leading twist, unlike in deeply virtual meson production
(DVMP). Since chiral-odd GPDs are not well known experimentally, this
provides an excellent opportunity to study them. On the other hand, these
new channels with 3 particles in the final state offer complementary ways to
access the chiral-even sector of GPD, besides the deeply virtual Compton
scattering and DVMP. We presently focus on the chiral-even sector, which
we illustrate with the case of a charged pion.

More specifically, the process we study is

γ(q) +N(p1) −→ γ(k) +N ′(p2) +m(pm) , (1)

where m = ρ0,±L,T, π
±. We denote the masses of the nucleon and the meson

to be M and Mm, respectively. The use of collinear QCD factorisation
requires that −u′ = (pm − q)2, −t′ = (k − q)2 and M2

γm = (pm + k)2 to be
large, while −t = (p2 − p1)

2 needs to be small. For this, we employ the cuts
−u′,−t′ > 1 GeV2 and −t < 0.5 GeV2. We note that these cuts are sufficient
to ensure that M2

γm > 1 GeV2. More details regarding the kinematics can
be found in [7, 8]. The results will be expressed as functions of (−u′) , (−t),
and M2

γm.

2. Computation

The chiral-even light-cone distribution amplitude (DA), e.g. for the π+

meson is defined, at the leading twist 2, by the matrix element

⟨π+(pπ)|ū(y)γ5γµd(−y)|0⟩ = ifπp
µ
π

1∫
0

dz e−i(z−z̄)pπ ·y ϕπ(z) , (2)
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with the decay constant fπ = 131MeV. For the computation, we use the
asymptotic form of the DA, as well as an alternative form, which we call
‘holographic’ DA, both normalised to 1, given by

ϕas(z) = 6z(1− z) , ϕhol(z) =
8

π

√
z(1− z) . (3)

The chiral-even vector GPDs of a quark q (where q = u, d) in the nucleon
target are defined by

〈
p
(
p2, λ

′)∣∣ q̄ (−y

2

)
γ+q

(y
2

)
|p(p1, λ)⟩ =

1∫
−1

dx e−
i
2
x(p+1 +p+2 )y−

×ū
(
p2, λ

′) [
γ+Hq(x, ξ, t) +

i

2m
σ+α∆αE

q(x, ξ, t)

]
u(p1, λ) , (4)

and analogously for chiral-even axial GPDs. In our analysis, the contribu-
tions from the chiral-even axial GPD Eq and Ẽq are neglected since they
are suppressed by kinematical factors at the cross-section level. The GPDs
are parametrised through double distributions. We note that for the mod-
elling of the chiral-even axial GPDs, we use two different parametrisations
for the input PDFs: The standard scenario, for which the light sea quark
and anti-quark distributions are flavour-symmetric, and the valence scenario
which corresponds to completely flavour-asymmetric light sea quark densi-
ties. More details can be found in [7, 8].

The amplitude for the process is expressed as the convolution over x
and z of the coefficient function (hard part), the GPD, and the DA. The
fully differential cross section, as a function of −u′, −t, and M2

γm, is then
given by

dσ

dtdu′ dM2
γm

∣∣∣∣
−t=(−t)min

=

∣∣M∣∣2
32S2

γNM2
γm(2π)3

, (5)

where −t has been set to the minimum value (−t)min allowed by the kine-
matics, including the imposed cuts, and is in general a function of M2

γm and
SγN . We refer the reader to [7–9] for the details regarding the computation,
the integration over the phase space, and the computation of the linear po-
larisation asymmetry (LPA) w.r.t. to the incoming photon. Note that the
circular asymmetry vanishes for the present unpolarised target case.

3. Results

We present only a few plots which are representative, focusing on the π+

case. In Fig. 1 on the left, we show the fully differential rate as a function
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of −u′, for different values of M2
γπ+ . The effect of using the two different

models for the distribution amplitude, as well as that of using the valence
and standard scenarios for modelling the GPDs, is also illustrated. We thus
find that using the holographic DA gives a result that is roughly twice that of
the asymptotical DA. Still, to properly distinguish between the two models,
one would need to include NLO corrections, since they can be large.
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Fig. 1. Left: The fully differential cross section for π+ as a function of −u′ is shown.
M2

γπ = 3, 4, 5 GeV2 correspond to black, red, and blue, respectively. The differ-
ence between standard (dotted) and valence (solid) scenarios for an asymptotical
DA, and between standard (dot-dashed) and valence (dashed) scenarios for a holo-
graphic DA is also illustrated. SγN is fixed at 20 GeV2. Right: The single differen-
tial cross section for π+ as a function of M2

γπ+ . The values SγN = 8, 14, 20 GeV2

correspond to brown, green, and blue, respectively. The same line style conventions
for the GPD and DA models are used for both plots.

The single differential cross section as a function of M2
γπ+ for different

values of SγN is shown in the right plot of Fig. 1. We note that, while the
fully differential cross section is largest for smaller M2

γπ+ , the range of −u′

is more restricted due to the shrinking of the phase space. In fact, there is
a compromise between the two effects, and this explains the position of the
peak around M2

γπ+ ≈ 3 GeV2 in the single differential cross-section plot on
the right of Fig. 1. More complete results, see [9], show that the position of
this peak is more or less the same, as SγN increases beyond 20 GeV2.

Finally, in Fig. 2, we show the variation of the cross section as a function
of SγN (left). The cross section drops rather rapidly with SγN , and has
a peak at around 20 GeV2 (note the log scales for both axes). We note
that, while the LHC can access very high energies, the photon flux from
the Pb nucleus in p–Pb collisions decreases very rapidly with SγN . This,
coupled with the fact the cross section itself decreases with increasing SγN ,
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Fig. 2. Left: The plot shows the cross section σγπ+ as a function of the center-of-
mass energy SγN . Right: The LPA w.r.t. the incoming photon for the π+ case is
shown as a function of M2

γπ+ at the single differential level. SγN = 8, 14, 20 GeV2

correspond to brown, green, and blue, respectively. In both plots, the same line
style conventions as in Fig. 1 are used.

implies that the total cross section is dominated by the region of relatively
small SγN . The plot on the right of Fig. 2 corresponds to the LPA at the
single differential level, as a function of M2

γπ+ . An interesting feature of the
plot is that the shape of the curves is very different for the two GPD models
we consider, and therefore, the LPA could be used to distinguish them.

The counting rates for ρ0L, ρ+L , and π+ mesons for the LHC in UPC and
future EIC are shown in Table 1. For the LHC, we used an integrated lu-
minosity of 1200 nb−1, while for the EIC, we used an expected integrated
luminosity of 107 nb−1. The range for the counting rates in each case is
obtained by considering the minimum and maximum obtained from the dif-
ferent models (holographic DA vs. asymptotical DA and valence vs. standard
scenarios). Two sets of counting rates are shown, one without any cut in SγN

and the other with a cut of SγN ≥ 300 GeV2. Introducing a lower bound on
SγN allows us to study GPDs in the small-ξ region. At SγN = 300 GeV2,
we find that the region of M2

γm where the cross section is maximum (see
Fig. 1) corresponds to ξ ≈ 5× 10−3, and it goes down to ξ ≈ 7.5× 10−5 at
SγN = 20000 GeV2. Despite the fact that the number of events is dominated
by the region of SγN ≤ 300 GeV2, we find that there may still be reasonable
statistics to prompt a study of our process in the small-ξ region at the LHC
and EIC.

The counting rates for the JLab 12-GeV experiment, which are roughly
one order of magnitude larger than those reported in the third column of
Table 1, can be found in [9]. Although the statistics are lower for p–Pb
UPCs at the LHC and EIC, the energies that can be accessed are higher.
This may enable a study of GPDs at small skewness ξ to be performed.
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Table 1. The counting rates for ρ0L, ρ+L , and π+ mesons for the LHC in UPC and
future EIC are shown. The third column shows the counting rates without any
cuts in SγN , while the fourth corresponds to having a cut of SγN ≥ 300 GeV2,
which gives access to the small-ξ region.

Experiment Meson Without cut SγN ≥ 300 GeV2

LHC in UPC
ρ0L 8.7–16×103 4.1–8.1×102

ρ+L 4.8–11×103 2.1–6.4×102

π+ 1.6–9.3×103 1.0–3.4×102

Future EIC
ρ0L 13–24×103 5.9–12×102

ρ+L 7.0–15×103 3.1–9.3×102

π+ 2.3–13×103 1.4–5.0×102

REFERENCES

[1] D.Y. Ivanov, B. Pire, L. Szymanowski, O.V. Teryaev, Phys. Lett. B 550, 65
(2002), arXiv:hep-ph/0209300.

[2] M. El Beiyad et al., Phys. Lett. B 688, 154 (2010),
arXiv:1001.4491 [hep-ph].

[3] A. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Phys. Rev. D 96, 074008
(2017), arXiv:1708.01043 [hep-ph].

[4] B. Pire, L. Szymanowski, S. Wallon, Phys. Rev. D 101, 074005 (2020),
arXiv:1912.10353 [hep-ph].

[5] A. Pedrak, B. Pire, L. Szymanowski, J. Wagner, Phys. Rev. D 101, 114027
(2020), arXiv:2003.03263 [hep-ph].

[6] W. Cosyn, B. Pire, Phys. Rev. D 103, 114002 (2021),
arXiv:2103.01411 [hep-ph].

[7] R. Boussarie, B. Pire, L. Szymanowski, S. Wallon, J. High Energy Phys.
2017, 054 (2017), arXiv:1609.03830 [hep-ph].

[8] G. Duplančić et al., J. High Energy Phys. 2018, 179 (2018),
arXiv:1809.08104 [hep-ph].

[9] G. Duplančić et al., arXiv:2212.00655 [hep-ph].
[10] J.-W. Qiu, Z. Yu, arXiv:2205.07846 [hep-ph].
[11] J.-W. Qiu, Z. Yu, arXiv:2210.07995 [hep-ph].

http://dx.doi.org/10.1016/S0370-2693(02)02856-3
http://dx.doi.org/10.1016/S0370-2693(02)02856-3
http://arxiv.org/abs/hep-ph/0209300
http://dx.doi.org/10.1016/j.physletb.2010.02.086
http://arxiv.org/abs/1001.4491
http://dx.doi.org/10.1103/PhysRevD.96.074008
http://dx.doi.org/10.1103/PhysRevD.96.074008
http://arxiv.org/abs/1708.01043
http://dx.doi.org/10.1103/PhysRevD.101.074005
http://arxiv.org/abs/1912.10353
http://dx.doi.org/10.1103/PhysRevD.101.114027
http://dx.doi.org/10.1103/PhysRevD.101.114027
http://arxiv.org/abs/2003.03263
http://dx.doi.org/10.1103/PhysRevD.103.114002
http://arxiv.org/abs/2103.01411
http://dx.doi.org/10.1007/JHEP02(2017)054
http://dx.doi.org/10.1007/JHEP02(2017)054
http://arxiv.org/abs/1609.03830
http://dx.doi.org/10.1007/JHEP11(2018)179
http://arxiv.org/abs/1809.08104
http://arxiv.org/abs/2212.00655
http://arxiv.org/abs/2205.07846
http://arxiv.org/abs/2210.07995

	1 Introduction
	2 Computation
	3 Results

