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We calculate the contribution from the qq̄g component of a virtual pho-
ton state to the small-x diffractive cross section in deep inelastic scattering
in the saturation regime. The obtained cross section is finite by itself and a
part of the full next-to-leading order result. We perform the calculation in
exact kinematics in the eikonal limit, and show that the previously known
high virtuality Q2 and large invariant mass M2

X results for the structure
functions can be extracted. We furthermore discuss the steps required to
obtain the full next-to-leading order result.
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1. Introduction

At high collision energy or small x, Deep Inelastic Scattering can be
conveniently described in the dipole picture, combined with an eikonal scat-
tering approximation for the scattering of the dipole off the target. When
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gluon saturation is important, the number of gluons given by a gluon dis-
tribution is not the best way to quantify the strength of the gluonic field
of a hadronic target. In the high collision energy limit, the interaction of a
high-energy probe should be eikonal, meaning that the transverse coordinate
of the probe does not change during the scattering. The basic degrees of
freedom in our description are thus eikonal scattering amplitudes.

The amplitude for the simplest coloured probe, a single quark, has a
microscopical interpretation in terms of a path-ordered exponential, Wilson
line V (x). The Wilson line also provides a direct connection to the classical
field in the initial stage of a heavy-ion collision. In the case of DIS, the rele-
vant dilute probe is a colour-neutral quark–antiquark dipole. Its scattering
amplitude is given by the dipole amplitude

N01 = 1− S01 = 1−
〈

1

Nc
trV (x0)V

†(x1)

〉
, (1)

which automatically interpolates between colour transparency at |x01| ≡
|x0 − x1| = 0 and saturation at |x01| ≳ 1/Qs.

This framework leads directly to the dipole picture of DIS. Here, at lead-
ing order, the DIS scattering is factorized into the γ∗ fluctuating into a qq̄
dipole, described by the photon light-cone wave function, and the dipole
amplitude. The total cross section is given, through the optical theorem,
with the dipole then transforming back to a virtual photon. Diffractive DIS,
at the focus of our attention in Ref. [1], requires a specific colour-neutral
final state after the target colour field. At leading order, the final state is
another qq̄ dipole, while at NLO, it includes an additional qq̄g state.

2. Diffractive structure function at leading order

The diffractive structure function F
D(3)
2 (β,Q2, xP) (or equivalently the

diffractive γ∗-target cross section dσD
λ, qq̄/ dM2

X d|t|, see [2] for more details)
is a function of three Lorentz-invariant kinematical variables. In addition to
the conventional Q2 and xBj = βxP, it also depends on how the γ∗-target
energy is divided between the diffractive system X and the rapidity gap,
with β = Q2/(Q2 +M2

X), where MX is the invariant mass of the diffrac-
tive system. In this paper, we are interested in the regime where β is not
parametrically small (i.e. MX not parametrically large), so that powers of
αs ln 1/β do not need to be resummed. In different regimes of 0 < β < 1,
the cross section is dominated by different kinds of partonic configurations
of the virtual photon [3]. At β → 1, one predominantly has a qq̄ state in a
longitudinal total helicity configuration, and at β ≈ 1/2, in a transverse one.
Although these LO qq̄ contributions have been known already, in Ref. [1] we
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derived new expressions allowing for a completely general impact parameter
dependence of the cross section
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dσD
λ, qq̄

dM2
X d|t|

=
Nc

4π

1∫
0

dz
∫

x0x1x̄0x̄1

I(2)
∆ I(2)

MX
ψ̃ †
γ∗
λ→q0̄q̄1̄

ψ̃γ∗
λ→q0q̄1

[
S†
0 1

− 1
]
[S01 − 1] ,

(2)
where z is a longitudinal momentum fraction. The result is expressed in
terms of “transfer functions” I(2)

∆ , I(2)
MX

, relating the (q, q̄) coordinates in the
amplitude (x0,x1) and conjugate (x0,x1) to t, and MX as

I(2)
∆ =

1

4π
J0

(√
|t| ∥zx0̄0 − (1− z)x1̄1∥

)
, (3)

I(2)
MX

=
1

4π
J0

(√
z(1− z)MX∥r̄ − r∥

)
. (4)

At β ≪ 1, one starts to become sensitive to higher invariant mass states
in the photon, meaning Fock states with a higher number of partons. The
first one of these is the qq̄g state. While the qq̄g Fock component is in
general an NLO correction, in the small β regime, it is in fact the leading
contribution. Thus, contributions where a gluon is emitted before the target
and survives until the final state are a special class of NLO corrections that
are meaningful to be considered separately.

3. Contribution of the qq̄g Fock state

In Ref. [1] (see also [4]), we calculated the full contribution of the dia-
grams shown in Fig. 1 to the diffractive structure function. The calculation
is performed in what we refer to as “exact eikonal kinematics,” where the only
kinematical approximation is the eikonal interaction with the target. The
results are expressed, analogously to Eq. (2), in terms of “transfer functions”
I(3)
MX

and I(3)
∆ . They are then multiplied by the squared gluon emission wave

function

xPF
D(4)NLO
T,L, qq̄g

(
xBj, Q

2, β, t
)
=

1∫
0

dz0
z0

dz1
z1

dz2
z2

δ(z0+z1+z2−1)

∫
x0,x1,x2,x̄0,x̄1,x̄2

×I(3)
MX

I(3)
∆ ψ̃ †

γ∗
λ→q0̄q̄1̄g2̄

ψ̃γ∗
λ→q0q̄1g2

[
1− S

(3)†
0 1 2

] [
1− S

(3)
012

]
, (5)

where the final factors represent the “tripole” Wilson line operators for the
qq̄g states to interact with the target [5].
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Fig. 1. Contributions to the amplitude where a gluon is emitted before the target,
and produced and measured in the final state.

The squared wave functions are lengthy, but straightforward expressions
in terms of the transverse coordinates and momentum fractions; they can be
found in Ref. [1]. It is interesting to discuss the different scales appearing in
the expressions. The photon wave functions involve, just as in the leading
order case, the Bessel K functions that exponentially cut off configurations
that are too large compared to the photon virtuality Q. The argument of
the Bessel function is the square root of

Q2X2
012 = Q2

[
z0z1x

2
01 + z0z2x

2
02 + z1z2x

2
12

]
(6)

interpreted as the ratio of the formation time of the qq̄g system with coor-
dinates x0,x1,x2 (with x01 ≡ x0 − x1 etc.) to the lifetime of the virtual
photon. The 3-particle transfer function to MX is

I(3)
MX

= 2
z0z1z2
(4π)2

MX

Y012
J1(MXY012) , (7)

with the coordinate combination conjugate to MX

Y 2
012 = z0z1 (x0̄0 − x1̄1)

2 + z1z2 (x2̄2 − x1̄1)
2 + z0z2 (x2̄2 − x0̄0)

2 . (8)

Finally, t is conjugate to the 3-particle center-of-mass coordinate

I(3)
∆ =

1

4π
J0
(√

−t∥z0x0̄0 + z1x1̄1 + z2x2̄2∥
)
. (9)

4. Towards a full NLO computation

There are several additional contributions that will still need to be in-
cluded for a full NLO result for the diffractive structure function. From
these additional contributions, it is not easy to define any further subsets
that would be finite by themselves, but they will all have to be considered
together in future work. Firstly, in addition to the “emission before target”
radiative corrections in Fig. 1, there are the corresponding gluon emissions
from quarks after the target. Unlike the contributions that we have included,
however, they will have a collinear divergence from the gluons being emitted
at a small transverse momentum with respect to the emitting (anti)quark.
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These collinear divergences are cancelled by wave function renormalization
of the outgoing quarks, i.e. by “propagator correction” diagrams on the out-
going quark lines. These in turn also include a UV divergence, and thus they
have to be considered together with virtual contributions. There are several
such virtual corrections. The most straightforward of these are the loop cor-
rections to the γ∗ → qq̄ wave function, which have already been calculated
in Refs. [6, 7]. There are also contributions where the gluon is emitted be-
fore the target, and then crosses the target but is reabsorbed without being
measured, analogously to the qq̄g contributions in [5, 7]. They involve both
UV divergences that must be subtracted and cancelled with the ones from
before and after the target, and large logarithms of longitudinal momenta
that must be factorized into BK/JIMWLK evolution of the target. Finally,
there are final-state interactions with gluon exchanges between the quark
and antiquark after the target. These are a rather novel kind of contribu-
tion in this context and there is still some discussion about the correct way
of treating them.

5. Known limiting cases

While our calculation of the diffractive structure function in the “exact
eikonal kinematics” is new, we have also checked that it reduces in specific
limiting cases to results that are already available in the literature. In the
limit of large MX , we obtain the result (see [8] and references therein)

xPF
D,(MS)
T,qq̄g =

αsNcCFQ
2

16π5αem

∫
x0x1x2

1∫
0

dz

∣∣∣ψ̃ LO
∣∣∣2

z(1− z)

x2
01

x2
02x

2
12

× [N02 +N12 −N01 −N02N12]
2 , (10)

which factorizes into the LO γ∗ → qq̄ wave function, the BK kernel for the
emission of a soft gluon, and a squared Wilson line operator. This result
is straightforwardly obtained from ours by first approximating the gluon as
being soft z2 → 0, in which case MX becomes dominated by the light cone
energy of the gluon. One then removes the constraint on MX by integrating
over the momentum fraction of the gluon z2. This unconstrained integration
introduces a divergence, which is however cured if final-state emissions are
included in the same kinematical approximation.

A rather more nontrivial task is to rederive the “Wüsthoff result” [3, 9]
in the limit of large Q2
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xPF
D,(GBW)
T,qq̄g =

αsβ

8π4

∑
f

e2f

∫
b

1∫
β

dz

Q2∫
0

dk2k4
[(

1−β

z

)2

+

(
β

z

)2
]
ln
Q2

k2

×

 ∞∫
0

drrK2(
√
zkr)J2(

√
1− zkr)Nadj(b, r, xP)

2

. (11)

This result is characterized by an explicit logarithmic dependence on Q2,
and a g → qq̄ splitting function that can be associated with target DGLAP
evolution. It also depends on an adjoint representation dipole operator, with
the small-size octet qq̄ pair after the gluon emission acting as an effective
gluon. The wave function of the photon splitting into this effective gluon
dipole has a rank-2 traceless structure, which results in the Bessel functions
J2 and K2 in the final result. The key point in reaching this result starting
from the dipole picture is to recognize that z and β in Eq. (11) are to be
understood as target (k−) momentum fractions. To arrive at this form,
it is convenient to identify the target momentum fraction variables using
invariant masses of the qq̄ and qq̄g states before and after the scattering.
One then finds the large-Q2 limit by looking at the aligned jet kinematical
limit for the dipole picture, with z0 ≪ z1 ≪ z2. The derivation of the
Wüsthoff result in the literature has not been very clearly documented, and
certainly the original approach used to derive it has been very different than
the one we use here. It is encouraging that, as a side result, our work has
resulted in an independent rederivation of this widely and successfully used
expression.
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