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We compute the next-leading-order cross sections for diffractive electro-
or photoproduction of a pair of hadrons with large pT, out of a nucleus or
a nucleon. A hybrid factorization is used, mixing collinear and small-x
factorizations, more precisely the shockwave formalism. We demonstrate
the cancellation of divergences and extract the finite parts of the differential
cross section in general kinematics.
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1. Introduction

To accurately uncover gluon saturation in nucleons and nuclei, precision
observables of experimentally-relevant processes are essential. In the last
few years, several processes have been investigated in diffractive DIS, such
as exclusive dijet production [1–3], exclusive meson production [4], as well as
in inclusive DIS, the production of single hadron [5], double hadron [6], and
dijet [7]. We propose here the diffractive di-hadron production in γ(∗)+p/A
as another path to saturation. The results are built upon [2] where the
Next-Leading-Order (NLO) impact factors are computed in the shockwave
formalism. We will emphasize the cancellation of infrared (IR) divergences
between the virtual, real, and counterterms contributions.
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2. Theoretical framework

We consider the inclusive production of a pair of hadrons with p⃗ 2
h1

∼ p⃗ 2
h2

γ(∗)(pγ) + P (p0) → h1(ph1) + h2 (ph2) +X + P ′ (p′0) , (1)

where X stands for the other undetected particles on the projectile side. A
hybrid factorization (shockwave, collinear) is used.

The shockwave framework describes the interaction of the probe with
the target, including saturation effects. The space-time dimension is D =
2 + d = 4 + 2ϵ. We introduce two light-cone vectors n1, n2 that define the
+/− directions, respectively, and work in the n2 · A = A+ = 0 gauge. The
gluon field is decomposed into external (internal) field bµ (Aµ), depending
on the value of their + momentum being below (above) an arbitrary cut-off
eηp+γ . We boost from the target rest frame to our working frame where the
photon and target move ultra-relativistically and p−0 ∼ p+γ ∼

√
s with s the

center-of-mass frame of the photon and the target. The bµ field then has
the form of bµ(z) = b−(x⃗)δ(x+)nµ

2 . The Wilson lines

Uz⃗ = P exp

ig

+∞∫
−∞

dz+b−(z)

 (2)

resum to all orders the eikonal interactions with those fields.
All momenta in the projectile side are decomposed as

pµi = xip
+
γ n

µ
1 +

p2i + p⃗ 2

2xip
+
γ

nµ
2 + pµi⊥ . (3)

The Pomeron exchange between the probe and the target is represented
by color-singlet operators built on Wilson lines, e.g. the dipole operator

Uij = Tr
(
Uz⃗iU

†
z⃗j

)
−Nc . (4)

Those operators evolve according to the B-JIMWLK equation [8–20].
Amplitudes are factorized between the impact factors and the non-per-

turbative matrix elements of those operators between the target in and
out state. Collinear factorization describes the fragmentation part and
its use is possible thanks to the hard scale p⃗ 2

h ≫ Λ2
QCD. We also impose

p⃗ 2 ≫ p⃗ 2
h , p⃗ being the relative transverse momentum of the two hadrons.

This implies that they have a large separation angle, eliminating the possi-
bility of them being produced from one single parton. From this theorem
and the collinearity of the fragmenting parton and the produced hadrons,
the LO cross section is the convolution of Fragmentation Functions (FF)
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and coefficient functions,

dσh1h2
0JI

dxh1dxh2d
dp⃗h1d

dp⃗h2

=
∑
q

1∫
xh1

dxq
xq

1∫
xh2

dxq̄
xq̄

(
xq
xh1

)d( xq̄
xh2

)d

×Dh1
q

(
xh1

xq

)
Dh2

q̄

(
xh2

xq̄

)
dσ̂JI

dxq dxq̄ ddp⃗q ddp⃗q̄
+ (h1 ↔ h2) , (5)

expressed in terms of the partonic cross section, J, I representing the photon
polarization for the complex amplitude and the amplitude, respectively.

3. NLO computations in a nutshell

The NLO density matrix contains all types of contributions depending
on the nature of the impact factors, i.e.

dσNLO
JI = dσ1JI + dσ2JI + dσ3JI + dσ4JI + dσ5JI . (6)

Here, dσ1JI and dσ2JI are the dipole × dipole and dipole × double dipole
virtual contributions while dσ3JI , dσ4JI , and dσ5JI are the dipole × dipole,
dipole × double dipole and double dipole × double dipole real parts. These
various contributions also depend on the detail of the FF used, as shown in
Fig. 1.

NLO

=

1-loop

+ c.c

(a)

+

(b)

+

(c)

(d)

+ +

(e)

(
+ q ↔ q̄

)

Fig. 1. NLO cross-section dependence on FF, represented by the box.
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To deal with divergences, dimensional regularization, and an IR cut-
off α are used for the transverse and longitudinal integrations respectively.
Soft and collinear are the only divergences present and are only contained in
dσ1JI and dσ3JI . The rapidity divergences, proportional to some lnα terms,
have been removed at the level of amplitude using the B-JIMWLK equation,
as explained in [2]. Diagram (e) in Fig. 1 corresponds to the counterterms
produced by putting the FF renormalization and evolution equation taken
from [21] into the LO cross section Eq. (5). Collinear divergences can only
come from diagrams where the splitting occurs after the shockwave and the
same is true for soft divergences, see Fig. 2.

(1) : soft + collinear (qg) (2) : soft

(3) : soft + collinear (q̄g) (4) : soft

(5) : collinear (q̄g) (6) : collinear (qg)

Fig. 2. Divergent diagrams in diagrams (b), (c), and (d) of Fig. 1. Diagrams (1)–
(4) correspond to the divergent part of diagram (b), diagram (5) is the divergent
diagram in diagram (c), and (6) for (d).

The collinear divergences appear as denominators of (x′ip⃗g − xgp⃗i)
2 with

i ∈ {q, q̄} in dσ3JI . To extract those divergences, we need to Fourier trans-
form the non-perturbative part to disentangle and integrate over the spec-
tator parton (the non-fragmenting one) transverse momentum easily. We
also need to change variables from (x′i, xg) to (xi, β), where (x′i, xg), xi are
the longitudinal fractions of the children and parent partons w.r.t. to the
photon momentum and β is the longitudinal fraction w.r.t. to the parent
parton. This is to be able to compare to the counterterms. When extracting
the divergent part of diagrams (1) and (3) of Fig. 2, one has to introduce the
+ prescription and remove the resulting soft contribution to avoid double
counting. This issue does not appear for diagrams (5) and (6).
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The soft contribution of diagram (b) of Fig. 1 is computed from diagrams
(1)–(4) of Fig. 2 altogether. We rescale p⃗g = xgu⃗ with |u⃗| ∼ |p⃗h| to isolate
the divergences in the form of

∫ 1
α

dxg

x3−d
g

. In the rest of the integrand, we put

safely xg to 0 (as x′q, x
′
q̄ cannot be arbitrarily small, being limited by xh).

Similar changes of variables as in the collinear case are realized too. Most
of the soft divergences in (1)–(4) cancel with diagram (a) of Fig. 1. The rest
cancel with divergences introduced by the + prescription in (1) and (3). The
leftover divergences from diagrams in Fig. 2 cancel with the counterterms.

4. Conclusion and outlook

We have computed the NLO cross sections of the diffractive production of
a pair of hadrons with large pT out of γ(∗)+p/A for all possible sets of photon
polarization and in general kinematics (Q2, t, pT). Divergences have been
cancelled altogether between the counterterms from the FF renormalization
and evolution equation, dipole × dipole real, and virtual cross sections. They
are applicable to both the LHC with Ultra-Peripheral collisions and to the
Electron–Ion Collider.
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