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Basing our study on the Regge field theory, we formulate and solve nu-
merically an energy evolution equation for the complex elastic scattering
amplitude. The equation is a complex version of the Fisher–Kolmogorov–
Petrovsky–Piscounov equation in the impact parameter space. We compare
the resulting amplitudes with the experimental data, numerically demon-
strate the existence of the fixed points, and discuss the recently discovered
scaling.
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1. Introduction

Due to its kinematic simplicity, elastic scattering of hadrons is one of the
most important processes in particle physics, probing electromagnetic inter-
actions at very small scattering angles, non-perturbative strong interactions
from small to moderate angles, and perturbative Quantum Chromodynam-
ics (QCD) at very large angles. Measurements of the cross sections as a
function of transferred momentum squared t = −q2 (related directly to the
scattering angle) exhibit a characteristic diffractive pattern: the cross section
falls rather rapidly, then reaches a dip (a local minimum), next a bump (a
local maximum), and finally decays rather slowly for large |t|. In the present
work, we are interested in a broad t range where the non-perturbative QCD
dominates, from the origin (|t| = 0) to the region around the dip-bump
structure.

Basing our study on the Regge field theory (RFT) [1–4], we have pre-
sented in Ref. [5] an energy evolution equation for the complex elastic scat-
tering amplitude in the impact parameter space b = |b| (conjugate to the

∗ Presented by A.K. Kohara at the Diffraction and Low-x 2022 Workshop, Corigliano
Calabro, Italy, 24–30 September, 2022.

(5-A3.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=16&aid=5-A3


5-A3.2 H. Kakkad, A.K. Kohara, P. Kotko

momentum transfer q). We have also performed a detailed numeric study
of the solutions and comparison to data. The work has been done inde-
pendently of [6], which we were not aware of, where a similar equation was
considered, however, with different goals and in isolation from the experi-
mental data.

The purpose of the following paper is not only to report our previous
results [5], but also to extend the original study to include the recently
discussed scaling properties of the elastic amplitude [7].

2. Evolution equation for elastic amplitude

The starting point is the RFT Lagrangian density proposed in the 1970s [2],

L =
1

2
q
←→
∂τ p+ α′∇bq · ∇bp− ϵ0 q p+ λ q (p+ q) p , (1)

where the fields q and p are related to Gribov’s Pomeron fields, q = iΨ̄ ,
p = iΨ depending both on b and τ , α′ is the Pomeron slope, ϵ0 is the
Pomeron intercept, and λ is the triple Pomeron coupling. The Lagrangian
density (1) gives rise to the Hamiltonian H with the Schrödinger equation

∂

∂τ
|ψ⟩ = −H|ψ⟩ , (2)

where |ψ⟩ is a generalized coherent state written in terms of higher-order
Pomeron correlation functions. In the semi-classical approximation, the
Schrödinger equation reduces to the Hamilton–Jacobi equation which is a
partial differential equation for the two-point correlation function. In our
work, we assume that the energy behaviour of the two-point correlation
function determines behaviour of the complex elastic scattering amplitudes
and consequently its S-matrix elements, leading to the following differential
equation:

∂S̃(τ, b)
∂τ

= α′∇2
bS̃(τ, b)− ϵ0

(
1− S̃(τ, b)

)
+ λ

(
1− S̃(τ, b)

)2
, (3)

where 1 − S̃ = T̃I − i T̃R. In the large impact parameter approximation,
separating the real and imaginary parts of the amplitudes, we obtain two
coupled partial differential equations

∂T̃I
∂τ

= α′∂
2T̃I
∂b2

+ ϵ0

[
T̃I

(
1− λ

ϵ0
T̃I

)
+
λ

ϵ0
T̃ 2
R

]
, (4)

and

∂T̃R
∂τ

= α′∂
2T̃R
∂b2

+ ϵ0 T̃R

(
1− 2

λ

ϵ0
T̃I

)
. (5)
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3. Numerical results

The numerical solution for the coupled set of differential equations (4)–
(5) was presented and discussed in detail in [5]. Here, we highlight the
strategy and the main results.

In order to solve the differential equations (4)–(5) numerically, we use
the Kohara–Ferreira–Kodama (KFK) model [8, 9] and independently the
Bourrely–Soffer–Wu (BSW) model [10] based on b-space profiles for T̃I and
T̃R as initial conditions at

√
s = 500 GeV. The values of the three parameters

(λ, ϵ0, α′) are determined by fitting the differential cross section at a given
energy and the cross sections for the remaining energies come as predictions.
In our case, we fit TOTEM data at 13 TeV (it has better statistics and small
fluctuations). The values are shown in Table 1.

Table 1. The parameters α′, ϵ0, and λ for different initial conditions.

α′ [GeV−2] ϵ0 λ/ϵ0

KFK 0.105 0.129 0.712
BSW 0.010 0.150 0.770

It is interesting to observe that the obtained Pomeron intercept ϵ0 is
relatively larger than the standard critical value ϵ0 = 0.096, and the average
value of the triple Pomeron coupling λ extracted from Table 1 is 0.103 (close
to 0.096). This should not appear as a surprise because unitarity in b-space
constrains λ = ϵ0 [6]. However, what is interesting is that the Pomeron
slope is rather small compared to the standard value of 0.25 GeV−2. This
possibility was already predicted in the 1970s.

In Fig. 1, we compare the results of our equation with the available
TOTEM data. In the left figure, up to the dip, including its position (see
Table 2) and magnitude, there is good agreement between TOTEM mea-
surements and our predictions represented via bands, which are obtained
using the results for the two initial conditions, KFK and BSW. In the right
panel of Fig. 1, the very forward part is in excellent agreement with TOTEM
measurements for 2.76, 7, 8, and 13 TeV. However, beyond the bump our
curves go below the TOTEM measurements. We suspect this is due to the
lack of other interaction vertices in the Lagrangian.

According to recent discussions about the Odderon, potentially observed
in LHC energies, the comparison between pp and pp̄ processes is crucial.
However, at high energies, there are no experiments performed at the same
energy for these two processes. The comparison between them at different
energies is possible by some change of variables [7], stacking up the differ-
ential cross sections measured in different energies. Since our amplitude
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reproduces the LHC data, we write our solutions in terms of this change of
variables and we observe approximate scaling, except for the very forward
part and beyond the dip.

Fig. 1. Left: The points represent the TOTEM p–p elastic differential cross section,
whereas the bands represent the prediction from our equation for the KFK and
BSW initial conditions. Right: The very forward part, up to |t| = 0.2 GeV2, of the
elastic differential cross section.

Fig. 2. We show our results re-scaled according to Ref. [7] from the LHC energies
up to Cosmic Ray at 57 TeV. It is interesting to note that despite the fixed position
of the dip, the shape of the differential cross section deviates for larger energies.

In Fig. 3, we present the amplitudes in t-space. Notice that the first zero
of the real amplitudes precedes that of the imaginary amplitudes as shown
on the left in Fig. 3; and, as the energy increases, the former approaches
the origin prior to the latter as expected from Martin’s theorem [11]. The
location of the latter is crucial for determining the t-dip. Another interest-
ing aspect is the presence of two fixed points for each T̃I and T̃R profile [12].
These fixed points occur on the either side of the first zero for both ampli-
tudes. The first fixed point, shown on the right in Fig. 3, appears in the very
forward range: |t| = 0.07 GeV2 and 0.2 GeV2 for T̃R and T̃I, respectively,
whereas the second fixed point appears at |t| = 0.5 GeV2 and 1 GeV2 as
shown on the left in Fig. 3.
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Fig. 3. Left: Real and imaginary amplitudes obtained from our equation for the
KFK initial condition for different energies seem to contain a fixed point beyond the
first zero. Right: The second fixed point in the amplitudes is in the very forward
part.

In Table 2, we show the derived quantities computed using our evolution
equation for both the initial conditions. The computed total cross section
σtot for different energies is in good agreement with the TOTEM [13] and

Table 2. We show the derived quantities obtained from our equation with the
two initial conditions (KFK and BSW), the corresponding LHC experimental data
(TOTEM [13]/ATLAS [14]), and the Cosmic Ray data (AUGER [15]).

√
s [TeV] σtot [mb] ρ B [GeV−2] tdip [GeV2]

KFK
initial
condition

2.76 84.31 0.123 17.28 0.65
7 99.07 0.117 18.47 0.53
8 101.32 0.116 18.65 0.51
13 109.78 0.113 19.32 0.46
57 138.32 0.105 21.55 0.36

BSW
initial
condition

2.76 84.94 0.113 19.23 0.64
7 100.97 0.105 20.41 0.53
8 103.41 0.104 20.59 0.51
13 112.62 0.101 21.27 0.46
57 143.66 0.091 23.59 0.35

TOTEM

2.76 84.7 ± 3.3 — 17.1 ± 0.30 0.61 ± 0.03
7 98.0 ± 2.5 0.145 ± 0.091 19.73 ± 0.40 0.53 ± 0.01
8 101.7 ± 2.9 0.12 ± 0.03 19.74 ± 0.28 0.52 ± 0.01
13 110.6 ± 3.4 0.10 ± 0.01 20.40 ± 0.01 0.47 ± 0.004

ATLAS
7 95.35 ± 0.38 0.14 (fix) 19.73 ± 0.14 —
8 96.07 ± 0.18 0.136 (fix) 19.74 ± 0.05 —

AUGER 57 133 ± 29 — — —
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AUGER [15] measurements. The ρ predictions for 7, 8, and 13 TeV are well
within the error limits of TOTEM measurements. For B, the average of real
and imaginary slopes, the measured values fall in between our predictions
for the two initial conditions.

4. Summary

In the present work, we discuss the evolution equation for elastic scat-
tering amplitudes based on the Regge Field Theory, transforming elastic
scattering of hadrons into an initial value problem. Using phenomenological
models for the real and imaginary profiles as initial conditions, we repro-
duce the differential cross sections measured in the LHC energies in a broad
t range, from |t| = 0 to the dip-bump region. With only three physical
parameters, the equation can accurately reproduce not only the differential
cross section but also the derived quantities such as σtot, ρ, the average
differential cross section slope B, and the elastic integrated cross section
σel. We can safely extrapolate and interpolate our results: we show some
interesting features such as the existence of fixed points in the amplitudes in
t-space for a broad s range and we reproduce the scaling in the LHC range,
recently discussed in interpretation of the Odderon.
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