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We review how structure constants in ' = 4 super Yang—Mills theory
in four dimensions can be computed using an integrable system. Then
we present our generalisation of the formalism to higher-point functions of
gauge-invariant composite operators of the model. We conclude by listing
achievements and future directions.
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1. Introduction: Review of AdS/CFT integrability

The N = 4 model is the maximally supersymmetric non-Abelian gauge
theory in four dimensions. We assume gauge group SU(N) in a large-N limit.
The super-partners of the field strength are four massless Majorana—Weyl
fermions and three massless complex scalar fields. All of these transform in
the adjoint representation of the gauge group. The theory is conformally-
invariant also at the quantum level, which becomes most transparent in
configuration space.

Gauge-invariant composite operators are given by products of the fields
under a gauge group trace. Simple examples are

1
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O = T (XY), Of=Tr (XL—k—QYXkY> Y £ X, X"

(1)
The half-BPS operators Op, are finite, i.e. do not have anomalous dimension.
On the other hand, the BMN operators |1] OE with many Xs and two
scalar excitations Y must be renormalised. They are a priori not conformal
eigenoperators so we obtain a large mixing problem for every length L.
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A two-point function of BMN operators receives a one-loop correction
only from the superpotential vertex, see Fig. 1. The Wick contraction of the
vertex on the first operator defines a linear map whose eigenvalues are the
anomalous dimensions. By way of example, at length 4, the operator basis
has just the two members {09, O}}. The mixing matrix is

/N = (_3 _iD (2)

and has eigenvalues/eigenvectors

Y0=0, v,=20]+0;, Y1=6, v, =00-0;. (3)

®> @ Tr(XY][X,Y]) ——

Fig.1. A two-point function of BMN operators in position space. Spectator prop-
agators (not involved in the interaction) are omitted.

Restricting to single-trace operators and planar graphs enforces a nearest
neighbour interaction. Identifying X = |, Y = 1, we obtain a circular spin
chain with the Hamiltonian H = 1—P owing to the commutators in the four-
vertex [2], the Heisenberg chain. The Bethe ansatz yields its eigenenergies:
every excitation moves along the chain with a quasi-momentum /rapidity
2u = cot(p/2). These must obey the Bethe equations

LTS =1, Sp=d Mt 4
e kl;[j 7k ; ik Uj—uk—l-’i’ ()

with the free propagation phase €'Pi L and the scattering matriz S. Impor-
tantly, there is factorised scattering: multi-particle scattering factorises into
two-particle processes. In addition, by the cyclicity of the gauge group trace

In the L = 4 example, we find uy = 1/v/12 = —u; with energy

1
n=2 1 =6 (5)

i=1

ENT,

It is possible to generalise the spin-chain model to a more complete set
of excitations and to include the effect of higher-loop Feynman diagrams
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changing to the so-called Zhukowsky variable % (u, g2N/(872)) and intro-
ducing a certain phase factor [3, 4]. The resulting asymptotic all-loops Bethe
equations are valid as long as the loop order does not exceed the operator
length. At higher orders, finite-size corrections become relevant [5].

In Fig. 2, we depict a three-point function of single-trace operators, or
equivalently, a three-string vertex. An integrable systems approach to three-
point computations has been devised in [6]. The three-vertex is split into
its back and front surface yielding hexagonal patches. In the figure, the
virtual edges are coloured. These correspond to bunches of propagators
stretching between the operators. The physical edges representing single-
trace operators are marked in black.

Lo {0

Fig. 2. Splitting a three-point function into two hexagons.

The operators also have to be split, taking into account all distributions
of excitations or magnons

11+l 1 1ol ! l
Ui = Y U5 T Uy Vi
—i—elpl h S12 wl{ly2} w{yl} p1+p2 ll ”¢ ¢{y1 y2} 9 (6)

where the symbol wf{m} denotes a Bethe state of length [ with a given set of

magnons. The shift operator and S matrix are as in (4). The total hexagon
amplitude is then

A= Z w(e, @)(=1) by _y (@) by_y(a), (7)

aUJa={u;}

where «, & denote the partition of the set of magnons into two subsets and
the splitting factors w can be inferred from (6). The individual hexagon is
evaluated as follows: as in the all-loops spectrum problem the excitations
are represented as XAA/ = x4 ® )ZA/. In particular, we write Y = ¢! @ ¢
and arrange all ¢s on a left and all ¢s on a right chain. In the hexagon
approach, scattering takes place on one of the chains, no matter which

oy, = | [T | (oh- ot [s|dF 62 ). )

j<kuj—uk—z
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For instance, for three Y excitations (or magnons),
S ’ﬁ 93 b3 > = 512513523 ‘55 5 o1 > - (9)
Finally, bra- and ket-state are contracted employing the rule <¢?\(§§’/> = e’
Again, in an asymptotic regime, corrections in the 't Hooft coupling can be
incorporated by z* and the phase factor [4, 6].
While finite-size effects become relevant to the spectrum problem only
at four loops and beyond, they can enter into the structure constant compu-

tation already at O(g?). To compute these, we have to insert bound states
By in mirror kinematics (x*(u) — 1/27(u) or 27 (u) — 1/27 (u))

A=Y [ ) wwd) barrn.0) by ya(auT) (10

a>0

(v denotes the type of rotation, cf. [6]) on the virtual edges. This can be
interpreted as gluing the cut edges by the insertion of one (or several) virtual
magnons. The last formula contains the mirror measure

a (92)%“ + a

= — 4 ... “ =uti-. 11
pi(u) Qutoua +..., ki (11)
The edge width or bridge length l;; = (L; + L;j — Ly)/2 thus determines the
loop order at which such corrections start to contribute.

2. Soft cushions — BMN-(BPS)3 four-point functions

Consider planar SU(N) four-point tree diagrams in position space. The
single-trace operators have to be connected on the surface of a sphere. Par-
allel propagators between points 4, j form one edge of width {l;;}.

Let us place a BMN operator (1) at point 1 and half-BPS operators at
the other ends. Looking onto point 1, we recognise hexagons — three in
the first two graphs of Fig. 3 (the bottom one between points 2,3,4 does

1 12 1f 2 1K 2 1 7 2
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Fig. 3. The four classes of planar four-point graphs (dashed lines behind the plane
of the drawing).
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not carry excitations and is therefore trivially equal to 1), and even four in
the third panel. The fourth diagram will not come into play in our set of
examples. We have to iterate the partitioning: in the first panel of Fig. 4,
let us initially place both excitations on the hexagon 1,2,3 and migrate them
over the edge 13, finally 14. The second panel requires a triple partition.
Partition invariance is guaranteed by the Bethe equations.

Fig.4. Panels (a) and (c) of Fig. 3 looking onto point 1.

By conformal transformations, any three points can be moved onto a line.
The twisted translation of the hexagon formalism mixes the fields in relation
to their position along this axis. This results in the effective propagators
(X (a1)X(a2)) =1, (Y(a1)X (a2)) = 1/(a1 — az). Computing with these, we
expect results homogeneous of the order of —2 in a; — a;. Choosing a; = 0,
independent variables are e.g. ass = 1/as — 1/as, asqs = 1/as — 1/ay.

There are no two-excitation BMN eigenoperators with v; # 0 at L < 4,
one at length 4 or 5, and there are two at lengths 6 and 7. We denote these
by 4,5,6F,7,7” and also label the half-BPS operators by their lengths. For
up to 7 Wick contractions [7]:

G (4;222) 44/2 (1,1,1) G (4;242) % (1,0,1)
G(4;233) V6 (2,2,3) G(5;232) V6 (3,2,3)
G(6F;222) | 42 (1,1,1) G (4;235) V10 | (2,4,5)
G(4;244) 8y/3 (1,1,2) G (4;343) 2v3 | (3,2,3)
G(5;252) 3v10 (1,0,1) G(5;234) 2v3 | (3.4,7)
G(5:333) | 9v6 (1,1,1) G(6F;242) 4(12/5) (2,1,2)
G(6F;233) 3(%5) (4,4,6 £5) || G(7:232) | 2v6 | (2.1.2)
G(7";232) | 62 (1,1,1)

where
G(..)=cxuv- (agg, a23as4, a3,) - (12)
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Introducing an orbital part for the hexagon

biij (@) = buij(a) = (ai;)* brij(e),  aj=———, (13)
a; a;

the sum of hexagon amplitudes for every set of edge widths on the graphs

in Fig. 3 (a),(b),(c) (avoiding overcounting) exactly reproduces the table, if
scaled up with a factor /L1 LoLsLy [7].

A more advanced test is the one-loop correction to the four-point func-

tions of half-BPS operators, which is entirely carried by finite-size correc-

tions [8]. The integrability computation directly matches Feynman graphs [9]

v v 1
/d,u(v’y) .’ = /d,LL(U’y) ’. = = ( 099999999994 —+ )
v v 2

Fig.5. One magnon gluing as Yang—Mills exchanges between matter lines. Up to
rational factors, the result is the off-shell one-loop box integral.

3. Conclusions

Hexagon tessellations compute flavour and combinatorics in tree-level
N = 4 correlators. Colour factors must be imported into higher-point func-
tions. Tilings can then address non-planar corrections, multi-trace opera-
tors, and the gauge groups U(N), SO(N), USp(N) |9]. On the other hand,
at higher-loop orders, the interplay between Feynman graphs and gluing
corrections is quite non-trivial so attributing the correct colour factors will
be complicated. Last, in the hexagon tessellation scenario, we are currently
using an S-matrix picture. The computation of higher-loop contributions
from gluing is then a formidable problem. The sum-integrals obtained are
akin to highly nested Mellin-Barnes representations.
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