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We explain how new physical results in 4D N = 2 supersymmetric
gauge theories can be found by connecting them to 2D quantum integrable
models. In particular, we set up an identification between the basic math-
ematical and physical objects of the two kinds of theories (the Q or Y and
T functions of integrability and the two periods of the gauge theories) and
then, we derive a stream of concepts and mathematical identities between
them. Moreover, we use this new correspondence to prove, understand,
and possibly generalise a recent application of gauge theories to black holes
perturbation theory. From this, several new insights follow into black holes
physics, especially a new powerful way of computing quasinormal mode fre-
quencies (the Thermodynamic Bethe Ansatz nonlinear integral equation),
characterising the gravitational wave signal (in the ringdown phase of black
hole merging). For simplicity and limits of space, we restrict the discussion
to the simplest case of the Liouville integrable model/pure SU(2) gauge
theory/D3 brane gravitation background triad.
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1. Introduction

The Seiberg and Witten (SW) construction for N = 2 SUSY gauge the-
ories has the advantage of computing exactly several quantities [1]. In par-
ticular, the SW theory enjoys a weak–strong coupling duality which allows
us to compute the full effective action for the light fields at any coupling. In
practice, this theory prescribes computing the effective prepotential F (0) by
means of peculiar periods a(0), a(0)D , defined as cycles (integrals) of a differ-
ential λ. The latter may be derived in turn from a hyperelliptic curve ySW.
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In the subsequent decades, it was devised a procedure to compute instanton
contributions to the prepotential F . It requires a deformation of spacetime
(called then Ω-background) through two complex parameters ϵ1, ϵ2. Then
F can be computed order by order in the instanton (exponential) coupling
Λ through combinatorial calculus on Young diagrams of the gauge group
representations [2]. In the case of only one deformation ϵ1 as ϵ2 → 0, the
so-called Nekrasov–Shatashvili (NS) limit [3], the SW differential becomes
quantised in an ordinary differential equation (ODE). In the case of SU(2)
gauge group, this is a (time-independent) Schrödinger equation in which
ϵ1 = ℏ plays the role of the Planck constant. The original classical SW
hyperelliptic curve is recovered simply by the leading order of the WKB
(asymptotic) expansion as ℏ → 0. The quantum SW periods can be defined
as the cycle integrals of quantum momentum P(y) = −iℏ d

dy lnψ(y) of the
solution ψ of the ODE [4](

a(ℏ, u,m,Λ0)
aD(ℏ, u,m,Λ0)

)
=

∮
A,B

P(y, ℏ, u,m,Λ0) dy = 2πi
∑
n

ResP(y)

∣∣∣∣
yA,B
n

. (1)

We shall indicate by a(n), a(n)D , n ∈ N their ℏ → 0 asymptotic expansion
modes.

Recently, the very same NS-deformed N = 2 SU(2) gauge theories found
new applications to black holes (BHs) perturbation theory [5–8]. It was
found that quantizations conditions on quantum gauge periods aD, a pro-
vide a new exact characterisation of quasinormal modes (QNMs) ωn, which
are the characteristic frequencies of the gravitational wave signal in the ring-
down (final) phase of BHs merging [5]. From this, which was dubbed SW-
QNM correspondence [8], many other applications and new results followed.
Interestingly, the BHs which can be studied through this approach are also
very “real” (for instance, the Kerr BHs) and enter astrophysics and gravita-
tion phenomenology, and thus the experimental search for deviations from
General Relativity (GR), such as horizon-scale structure [9, 10].

This paper is organized as follows. In Section 2, we explain a new kind of
gauge-integrability correspondence for 4D N = 2 SUSY in the NS limit and
2D integrable modes. In particular, we find basic identifications between
Baxter’s Q, Y , and T functions of integrability and the periods a, aD of the
gauge theories, and from this, new results on both sides of the correspon-
dence follow. Then in Section 3, we use this correspondence to prove the
SW-QNM correspondence. This allows us also to find through integrability
a new method to compute QNMs of black holes. For limits of space, we
only deal with the simplest case, the Liouville integrable model/pure SU(2)
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gauge theory/D3 brane gravitation background triad. For further details,
explanations, extensions, and general validity of the method, we refer to our
recent papers [11–17].

2. A new gauge/integrability correspondence

The quantum SW curve of pure (Nf = 0) SU(2) N = 2 SUSY in the NS
limit is the following ODE:

−ℏ2

2

d2

dy2
ψ(y) +

[
Λ2
0 cosh y + u

]
ψ(y) = 0 . (2)

Provided we set the change of variables as ℏ
Λ0

= e−θ, u
Λ2
0
= P 2

2 e−2θ, it be-
comes the ODE for the self-dual (central charge c = 25) Liouville model [11]{

− d2

dy2
+ 2 e2θ cosh y + P 2

}
ψ(y) = 0 . (3)

The starting point of ODE/IM correspondence is finding the regular
solutions at the singular points at y → ±∞

ψ±,0(y) ≃ 2−
1
2 e−

1
2
θ∓ 1

4
ye−eθ±y/2

, y → ±∞ . (4)

Then we can use the discrete symmetries of the equation

Ω± : y → y ± iπ , θ → θ + iπ/2 , P → P (5)

to define other independent solutions ψ−,k = Ωk
−ψ−,0, ψ+,k = Ωk

+ψ+,0, which
have these invariance properties Ωk

+ψ−,0 = ψ−,0 , Ω
k
−ψ+,0 = ψ+,0. These so-

lutions are normalized so that their Wronskians are W [ψ−,k+1, ψ−,k] = −i,
W [ψ+,k+1, ψ+,k] = i. Now, we can define the Q and T functions (vacuum
eigenvalue of corresponding operators) as the Wronskians of the regular solu-
tions at different singular points or the same point in different Stokes sectors,
respectively,

Q(θ) =W [ψ+, ψ−] , T (θ) = iW [ψ+,−1, ψ+,1] = −iW [ψ−,−1, ψ−,1] .
(6)

By the properties of Wronskians and connexion relations between solutions
at different singular points or in different Stokes sectors (see [11, 15] for
details), we can obtain the QQ and TQ systems

Q(θ + iπ/2)Q(θ − iπ/2) = 1 +Q(θ)2 , (7)
T (θ)Q(θ) = Q(θ − iπ/2) +Q(θ + iπ/2) . (8)
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We define also the Y function as Y (θ, P ) = Q2(θ, P ) and from (7) the Y -sys-
tem follows

Y (θ + iπ/2)Y (θ − iπ/2) = (1 + Y (θ))2 . (9)
Eventually, we solve it explicitly (up to quadratures) via a Thermodynamic
Bethe Ansatz (TBA) integral equation for the pseudoenergy ε(θ) = − lnY (θ)

ε(θ) =
16
√
π3

Γ
(
1
4

)2 eθ − 2

∞∫
−∞

ln [1 + exp{−ε(θ′)}]
cosh(θ − θ′)

dθ′

2π
. (10)

In this, P does not appear explicitly, but fixes the solution by defining the
asymptotic linear behaviour as ε(θ, P ) ≃ +8Pθ, P > 0, at θ → −∞ (which
actually can be derived from the perturbative solution of ODE (3)).

In [11, 16] we proved that the quantum gauge periods a and aD are
directly connected to Baxter’s Q and T functions as

Q(θ, p) = exp

{
2πi

ℏ
aD(ℏ, u, Λ0)

}
, T (θ, p) = 2 cos

{
2π

ℏ
a(ℏ, u, Λ0)

}
.

(11)
As we have (11), we can search for a gauge interpretation of the integrability
functional relations (7), (8), and (9). In particular, the QQ system gets the
form of

1 +Q2(θ, u) = Q(θ − iπ/2,−u)Q(θ + iπ/2,−u) , (12)
where we have considered that θ → θ∓ iπ/2 means u→ −u (as P is fixed).
Thus, it can be inverted into a TBA for the gauge period

2πi

ℏ
aD(ℏ(θ),−u,Λ0) = 2πia

(0)
D (−u,Λ0)

eθ

Λ0

+

∞∫
−∞

ln!
[
1 + exp

{
4πi
ℏ aD(ℏ(θ

′), u, Λ0)
}]

cosh (θ − θ′)

dθ′

2π
, (13)

which eventually allows to compute exactly the prepotential F . The TQ
relation and T periodicity relations in the gauge variables read

T (θ, u)Q(θ, u) = Q(θ − iπ/2,−u) +Q(θ + iπ/2,−u) , (14)
T (θ, u) = T (θ − iπ/2,−u) , (15)

and we can find out their meaning by checking that, with identifications (11)
their asymptotic θ → +∞ or ℏ → 0 entail the Z2 symmetry relation for the
other period extended to the NS-quantum theory [18, 19]

a
(n)
D (−u) = i(−1)n

[
− sgn (Imu) a

(n)
D (u) + a(n)(u)

]
, (16)

a(n)(−u) = −i(−1)n sgn (Imu) a(n)(u) . (17)
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Thus, relations (14) encode these Z2 relations among the asymptotic modes
as unique exact equations, in a highly nonlinear and nontrivial way through
the integrability structure. These were examples of new results for N =
2 SUSY gained through the new identities (11) we proved, but from it,
we can derive also new results for integrability, for instance, formulae of
the integrals of motion in terms of the gauge periods (and vice versa) as
explained in [11, 16].

3. A new gauge/integrability/gravity triality

Let us now illustrate briefly a further connexion between integrability
and N = 2 gauge theory to black holes perturbation theory, by taking the
simple example of the D3 brane background. It has a line element

ds2 = H(r)−
1
2
(
−dt2 + dx2

)
+H(r)

1
2
(
dr2 + r2dΩ2

5

)
, (18)

where x are the longitudinal coordinates, H(r) = 1+L4/r4, and dΩ2
5 denotes

the metric of the transverse round S5-sphere. The scalar field perturbation
in this background is [6]

d2

dr2
ϕ(r) +

[
ω2

(
1 +

L4

r4

)
−

(l + 2)2 − 1
4

r2

]
ϕ(r) = 0 , (19)

where ω is the QNM frequency and l ∈ N. Upon the change of variables
r = Le

y
2 , ωL = −2ieθ, P = 1

2(l + 2), the equation reduces to equation (3)
for the self-dual Liouville integrable model. As crucially noted in [15], the
QNMs are defined as the zeroes of the same Wronksian (6) which defines
the Q function (cf. [20]), namely the Bethe roots

Q(θn) = 0 , (20)

which upon the gauge-integrability identification (11) directly implies quan-
tization condition of the dual gauge period aD

1

ℏ
aD

(
θn +

iπ

2
,−u,Λ0

)
=

1

2

(
n+

1

2

)
, n ∈ N (21)

as found heuristically in [5]. TheQQ system (7) also characterizes the QNMs
as Y (θn − iπ/2) = −1, from which the TBA quantization condition follows

ε(θn − iπ/2) = −iπ(2n+ 1) , n ∈ Z , (22)

which can be easily implemented by using the TBA (10) as reported in
Table 1. This constitutes a new method for computing QNMs, which may be
convenient in some cases. The connexion to integrability is actually richer
than what we can explain here, involving also sometimes the T function
and showing an essential connexion with black hole physics, beyond the
determination of QNMs [15–17].
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Table 1. Comparison of QNMs of the D3 brane from the TBA (10) (through (22)
with n = 0) and the Leaver method [21] (with L = 1).

n l TBA Leaver
0 0 1.36912 − 0.504048i 1.36972− 0.504311i

0 1 2.09118 − 0.501788i 2.09176− 0.501811i

0 2 2.8057 − 0.501009i 2.80629− 0.501000i

0 3 3.51723 − 0.500649i 3.51783− 0.500634i

0 4 4.22728 − 0.500453i 4.22790− 0.500438i
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