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Parton branching methods underlie the Monte Carlo (MC) generators,
being therefore of key importance for obtaining high-energy physics predic-
tions. We construct a new parton branching algorithm which, for the first
time, incorporates the off-shell, transverse-momentum-dependent (TMD)
splitting functions, defined from the high-energy limit of partonic decay
amplitudes. Based on these TMD splitting functions, we construct a new
TMD Sudakov form factor. We present the first MC implementation of
the algorithm for the evolution of the TMD and integrated parton distri-
bution functions (PDFs). We use this implementation to evaluate small-x
corrections to the distributions and verify the momentum sum rule. The
presented study is a first step towards a full TMD MC generator covering
the small-x phase space.
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1. Introduction

The outcomes of high-energy collider experiments depend to a large ex-
tent on event simulations obtained with MC generators. So do the planning
and development of future machines and measurements [1–5]. The baseline
MCs are based on the description of hadron structure provided by collinear
PDFs [6], while a more complete, 3D description of hadron structure is
given by TMD PDFs [7]. There are thus efforts to include elements of TMD
physics in the modern MC generators and in the parton-branching algo-
rithms on which they are based. The idea of the work [8] described in this
article is to include the TMD splitting functions obtained from the high-
energy (or small-x) limit of partonic amplitudes [9] in a parton branching
algorithm, with the goal to incorporate in the parton evolution both small-x
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and Sudakov contributions. Thanks to its applicability over a wide kine-
matic region, the algorithm provided by the TMD Parton Branching (PB)
method [10, 11] was chosen to perform this research.

2. The TMD Parton Branching method

The PB method is a flexible, widely applicable MC approach to obtain
QCD high-energy predictions based on TMD PDFs, simply called TMDs.
One of its main ingredients is a forward evolution equation [10, 11]. The evo-
lution of the parton density is expressed in terms of real, resolvable branch-
ings and virtual and non-resolvable contributions, which are treated with
Sudakov form factors. Thanks to the momentum sum rule1 and unitarity,
the Sudakov form factor can be written in terms of real, resolvable splittings
and interpreted as a non-emission probability. Owing to the simple, intu-
itive picture of the evolution in terms of a cascade of branchings and the
probabilistic interpretation of the splitting functions and the Sudakov form
factors, the PB evolution equation can be solved with MC techniques using
a parton branching algorithm.

Additionally to the evolution equation, PB provides also a procedure
to fit parameters of the initial distribution to the experimental data using
xFitter platform [12]. Obtained PB TMDs and PDFs [13–15] are accessible
via TMDlib [16] and in LHAPDF [17] format for the usage in (TMD) MC
generators. A generator of a special importance is the TMD MC generator
Cascade [18] where the TMD initial state parton shower is implemented with
the backward evolution guided by the PB TMDs. The PB method provides
the procedure to match PB TMDs with next-to-leading order (NLO) matrix
elements [19] to obtain predictions. Recently, there was also a merging pro-
cedure developed [20]. The PB method was used to study different evolution
scenarios such as ordering conditions or resolution scales, see e.g. [10, 21].
The PB predictions have been calculated for multiple measurements, in very
different energy and mass regimes, including hadron colliders, fixed-target
experiments, and ep collider [13, 19, 22–25].

All those successful PB studies were performed with the DGLAP [26–
29] splitting functions calculated in the collinear approximation. However,
in some infrared-sensitive phase-space regions, the collinear approximation
is not enough [30, 31]. In this work, the PB approach was extended by using
the TMD splitting functions [9, 32–34].

1 The momentum sum rule for the DGLAP splitting functions Pab(z, µ
2) yields∑

a

∫ 1

0
dz zPab(z, µ

2) = 0.
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3. TMD splitting functions

The concept of the TMD splitting functions originates from the high-
energy factorization [9], where the TMD splitting function for the splitting
of an off-shell gluon into quark, P̃qg, was calculated. The other channels were
obtained in [32–34]. The splitting functions have well-defined collinear and
high-energy limits. It was demonstrated that in the limit of small incoming
transverse momenta, after the angular average, the TMD splitting functions
converge to the DGLAP leading order (LO) splitting functions. For finite
transverse momenta, the TMD splitting function [9] can be written as an ex-
pansion in powers of the transverse momenta with z-dependent coefficients,
which, after convoluting them with TMD gluon Green’s functions [35, 36],
give the corrections to the splitting function logarithmically enhanced for
z → 0. Therefore, the work presented next on the implementation of TMD
splitting functions in the PB method can be viewed as a step toward con-
structing full MC generators for small-x physics (see e.g. [37–41]).

4. TMD splitting functions in the PB method

The DGLAP splitting functions PR
ab(z, µ

′) were replaced by the TMD
ones P̃R

ab (z, k
′
⊥, µ

′
⊥) in the PB evolution equation for the momentum weighted

parton density, xAa = Ãa, [11]

Ãa

(
x, k2⊥, µ

2
)
= ∆a

(
µ2, k2⊥

)
Ãa

(
x, k2⊥, µ

2
0

)
+
∑
b

∫
d2µ′

⊥
πµ′2

⊥
Θ
(
µ′2
⊥ − µ2

0

)
×Θ

(
µ2 − µ′2

⊥
) zM∫

x

dz
∆a

(
µ2, k2⊥

)
∆a

(
µ′2
⊥, k

2
⊥
) P̃R

ab

(
z, k′⊥, µ

′
⊥
)
Ãb

(x
z
, k′2⊥, µ

′2
⊥
)
, (1)

where a, b are the flavour indices, x is the fraction of the proton’s longitudinal
momentum carried by the parton a, k⊥ the transverse momentum where
k′⊥ = k⊥ + (1 − z)µ′

⊥, µ the evolution scale, µ0 the initial evolution scale,
z the momentum transfer in the splitting, and zM the soft gluon resolution
scale which can be scale-dependent. To treat the virtual/non-resolvable
emissions, a new TMD Sudakov form factor was introduced [8]

∆a

(
µ2, k2⊥

)
= exp

(
−
∑
b

µ2∫
µ2
0

dµ′2

µ′2

zM∫
0

dz zP̄R
ba

(
z, k2⊥, µ

′2)) , (2)

using the angular averaged TMD splitting functions P̄R
ba(z, k

2
⊥, µ

′2). This
construction was possible thanks to the momentum sum rule and unitarity.
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As an intermediate step, a scenario with the TMD splittings included in the
real resolvable emissions, but with the default PB Sudakov form factor

∆a

(
µ2

)
= exp

(
−
∑
b

µ2∫
µ2
0

dµ′2

µ′2

zM∫
0

dz zPR
ba

(
z, µ′2)) (3)

was studied. It was shown analytically [8] that only when the same type
of splitting functions are used both in the real emissions and Sudakov form
factors, the evolution equation from Eq. (1) satisfies the momentum sum
rule. In other words, for the evolution equation Eq. (1), with the TMD
Sudakov form factor in the form given by Eq. (2), the momentum sum rule
holds, whereas with the collinear Sudakov form factor from Eq. (3), it is
broken.

5. Numerical results

In the upper part of Fig. 1, the integrated distributions (iTMDs) as a
function of x at the scale µ = 100 GeV are shown for down quark and gluon
for three evolution scenarios: the dashed red curve is obtained from the PB
evolution equation with collinear splitting functions, the blue dotted curve
with the model with TMD splitting functions in real resolvable emissions,
but with the collinear Sudakov form factors, and the solid magenta line with
the TMD splitting functions both in the real resolvable emissions and the
Sudakov form factors. In the bottom of Fig. 1, the down quark and gluon
TMDs as a function of |k⊥| are shown at x = 0.001, µ = 100 GeV for the
same three models. The bottom panel of each plot shows the ratios obtained
with respect to the fully collinear scenario. For the purpose of this study, the
same starting distribution was used for all those three models, which means
that the differences between the curves come only from the evolution, i.e.
purely from the treatment of the splitting functions. For the iTMDs, the
effect of the TMD splitting functions is visible especially at low x, for the
TMDs, the effects are visible in the whole k⊥ region. It is worth reminding
that for both the red and magenta curves, the momentum sum rule holds,
whereas the blue curve violates it. The numerical check of the momentum
sum rule was performed in [8].
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Fig. 1. Down quark and gluon distributions for scenarios with the collinear splitting
functions (red), with the TMD splitting functions in the real emissions and the
collinear Sudakov form factor (blue) and with the TMD splitting functions both
in the real emissions and in the Sudakov form factor (purple). Top: integrated
TMDs as a function of x at µ = 100 GeV. Bottom: TMDs as a function of |k⊥| at
x = 0.001 and µ = 100 GeV [8].



5-A46.6 A. Lelek

6. Conclusions

In this work, a parton branching algorithm to obtain TMDs and inte-
grated distributions, which for the first time includes TMD splitting func-
tions and fulfils the momentum sum rule, was presented. A new TMD
Sudakov form factor was constructed using the momentum sum rule and
unitarity. The studies presented here are at the level of the forward evo-
lution but it is a first step towards a full TMD MC generator covering the
small-x phase space.

Presented results were obtained in collaboration with F. Hautmann,
M. Hentschinski, L. Keersmaekers, A. Kusina, and K. Kutak. A. Lelek
acknowledges funding by the Research Foundation-Flanders (FWO) (appli-
cation number: 1272421N).
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