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We calculate the Next-to-Leading Order (NLO) virtual correction to the
Higgs-induced DIS coefficient function in the infinite top-mass limit. Since
we want to use this result in the framework of kt-factorization to resum
small-x logarithms up to Next-to-Leading Logarithm (NLL), we work in
light-cone gauge and we keep the incoming gluon off-shell. This choice
raises many challenging points such as the presence of spurious singularities
and a different definition for the UV-counterterms. This calculation is a
necessary ingredient for the coefficient function that will be used to resum
up to NLL small-x logarithms for this process.
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1. Introduction

Using the kt-factorization theorem, we can write the resummed coeffi-
cient function for a process as [1]

C(N,αs) =

∫
dk2t C

(
N, k2t , Q

2, αs

)
U(N, k2t , Q

2) . (1)

The first term in the convolution is the off-shell coefficient function for the
process that in axial gauge is free from small-x logarithms. The other term
is a universal factor that, computed at the required logarithmic accuracy,
resums the small-x logs. This formula works well at Leading-Logarithmic
(LL) accuracy [1] and we want to test it at Next-to-Leading-Log (NLL)
accuracy. To do so, we have to compute the off-shell coefficient function at
Next-to-Leading Order (NLO) and the factor U at NNL.
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In this work, we present a preliminary result for the NLO virtual con-
tribution to the coefficient function for a specific process, the Deep-Inelastic
Scattering (DIS) initiated by a Higgs boson. We chose this process because
it is simple enough to allow us to understand some technical issues like the
requirement to work in the axial gauge.

2. Higgs-induced Deep-Inelastic-Scattering

The process we are interested in is

g(∗)(k1) +H(q) → g(k2) , (2)

where the initial-state gluon is off-shell. The Feynman rule for the lowest-
order coupling between Higgs and gluons is

Mµν
ab (k1, k2) = i c (kν1k

µ
2 − gµνk1 · k2) δab , (3)

where c = αs

√
GF

√
2

3π and a, b are the colours of the gluons. The momenta of
the involved partons are shown in Fig. 1. Following the kt-factorization pro-
cedure, we identify the off-shellness of the incoming gluon with its transverse
component. In particular, we define

kµ1 = kµ + kµt , (4)

so that k · kt = 0 and k21 = −k2
t .

Fig. 1. Higgs induced DIS.

We compute the one-loop contribution to this process in the light-cone
gauge. This means that the gauge vector nµ is defined so that A ·n = 0 and
n2 = 0.

To compute the coefficient function for the process in Eq. (2), we have
to understand how to treat the sum over the polarization of an off-shell
gluon. Catani, Ciafaloni and Hautmann in [2] and [3] address this problem
by defining

dµνCH(k1) = (d− 2)
kµt k

ν
t

k2
t

. (5)
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This projector by construction selects the dominant part of the amplitude
in the high-energy region and if we take its on-shell limit, we get

lim
k2

t→0

〈
dµνCH

〉
= gµν⊥ , (6)

that is the usual sum over the polarizations of an on-shell gluon. This
projector works well if we are interested in resumming LL terms, but we are
investigating if it works also when we want to resum the following logarithmic
order. An alternative definition for this tensor can be

dµν(k1, n) = −gµν +
kµ1n

ν + kν1n
µ

k1 · n
. (7)

This tensor is derived by considering the off-shell incoming gluon as emitted
by an on-shell massless quark. This is only one of the possible choices that
one can make. For example, if the off-shell gluon comes from the splitting
of another gluon, we get a different result. We refer to our future work for
a complete treatment of this problem. For the purpose of this work we use
the definition in Eq. (7) to give a more compact result.

2.1. Principal value prescription

Since we worked in the light-cone gauge, we found in our calculations
some non-covariant loop integrals. These contributions arise due to the
form of the gluon propagator in this gauge

Πµν
a,b(k, n) =

iδa b
k2

[
−gµν +

kµnν + kνnµ

k · n

]
. (8)

Moreover, the second term in the brackets gives rise to some spurious singu-
larities only due to the gauge choice. These singularities must be regulated
and, since they are gauge-dependent, must not be present in the final result.

We regulate these singularities with the Principal Value (PV) prescrip-
tion [4–6], while another possible prescription is the Mandelstam–Leibbrant
(ML) [7, 8]. Both these possibilities have strengths and weaknesses, for a
complete discussion on this topic, see [9].

The PV prescription consists in substituting

1

k · n
→ k · n

(k · n)2 + δ2(p · n)
, (9)

where the regulator is δ and pµ is some external momenta (this term is there
for dimensional reasons). Computed all the integrals with this regulariza-
tion, we will take the limit where δ goes to zero. The final result for the
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complete coefficient function, where we put together both the real and the
virtual contribution, must be independent of δ since it is gauge invariant.
This will provide a check for our calculation.

The most general loop integral that arises in our calculation is of the
form of

In =

∫
ddk

(2π)d
f (k · n)

D1D2 . . . Dn
, (10)

where Di are the usual covariant denominators while all the non-covariant
parts are encoded in the function f(k · n). We derived some general results
that allow us to compute non-covariant loop integrals without making as-
sumptions on the non-covariant part. For a complete treatment of this topic,
we refer to our future work. The case where the numerator is a more com-
plicated structure with different powers of the loop momentum can always
be reduced to the scalar case.

2.2. Renormalization

Another issue we encountered working in light-cone gauge is the defini-
tion of the ultraviolet counterterms. In fact, in this gauge, their structure
is more complicated and cannot be trivially related to the structure of the
terms in the Lagrangian. A discussion on this topic can be found in [6] or
in [9].

Here we report, as an example, on the result for the counterterm of the
one-loop gluon propagator

Πµν(k1, n) = −i
αs

4π

CAδa,b
ϵ

[(
11

3
+ 4 ln(δ)

)(
kµ1k

ν
1 − k21g

µν
)

−4 (1 + ln(δ))

(
kµ1k

ν
1 − k21

k1 · n
(kµ1n

ν + kν1n
µ) +

k41
(k1 · n)2

nµnν

)]
. (11)

The first thing we notice is the dependence on ln δ. This is due to the
presence of spurious singularities and must vanish in the final result. Another
observation one can make is about the tensorial structure. In the first row of
Eq. (11), we recognize the tensorial structure of the counterterm for the gluon
propagator that one can derive from the Lagrangian, while the second row
is something new. It is however interesting to notice that the counterterm
is still transverse with respect to the gluon momentum kµ1 .

We also have to define the counterterm for the Higgs-gluon effective
vertex. We choose to define them by computing the ultraviolet pole of each
diagram that contributes to the virtual part of this coefficient function. To
select only the UV pole, we compute the diagrams in Fig. 2 with both the
incoming and the outgoing gluons off-shell. In this case, the result is quite
more complicated than the one in Eq. (11).
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Fig. 2. Diagrams contributing to the one-loop corrections to the gluon-Higgs vertex.

2.3. Virtual contribution

Here we present our first result. The virtual one-loop contribution to
the coefficient function of the Higgs-induced DIS with the incoming gluon
off-shell is

C(1)
g∗H→g =

ln (ξ)− ln (1 + ξ)

ϵ

(
ξ2 + 2ξ + 2

) (
ξ3 − ξ2 + ξ − 1

)
4(ξ + 1)2

+
ξ
(
2ξ3 − 2ξ − 1

)
(ξ + 1)3

ln2(δ) +
ξ3 ln(1 + ξ)

2(ξ + 1)2
ln(δ) +

1

36(ξ + 1)3

[
33π2ξ4

+33π2ξ3 + 62ξ2 − 162ξ4 ln2(ξ)− 9ξ4 ln(ξ)− 117ξ4 ln2(ξ + 1)− 9ξ2 ln(ξ)

−162ξ3 ln2(ξ)− 135ξ3 ln2(ξ + 1) + 27ξ2 ln2(ξ)− 36ξ3 ln(ξ)− 39π2

−9ξ2 ln2(ξ + 1) + 162ξ4 ln(ξ − 1) ln(ξ)− 54ξ4 ln(ξ − 1) ln(ξ + 1)− 39π2ξ

+180ξ4 ln(ξ) ln(ξ + 1) + 9ξ4 ln(ξ + 1) + 180ξ3 ln(ξ − 1) ln(ξ)− 67ξ4

−72ξ3 ln(ξ − 1) ln(ξ + 1) + 198ξ3 ln(ξ) ln(ξ + 1) + 18ξ2 ln(ξ − 1) ln(ξ)

−18ξ2 ln(ξ − 1) ln(ξ + 1)− 18ξ2 ln(ξ) ln(ξ + 1) + 18ξ2 ln(ξ + 1)− 67

+342ξ ln2(ξ) + 234ξ ln2(ξ + 1) + 315 ln2(ξ) + 225 ln2(ξ + 1) + 18ξ ln(ξ)

−180ξ ln(ξ − 1) ln(ξ) + 72ξ ln(ξ − 1) ln(ξ + 1)− 360ξ ln(ξ) ln(ξ + 1)

−18ξ ln(ξ + 1)− 180 ln(ξ − 1) ln(ξ) + 72 ln(ξ − 1) ln(ξ + 1)− 9 ln(ξ + 1)

−324 ln(ξ) ln(ξ + 1) + 36ξ3 ln(ξ + 1)− 36
(
ξ4 + ξ3 − ξ2 + 1

)
Li2

(
1

ξ

)
−18

(
2ξ4 + 2ξ3 + ξ2 − 3ξ − 4

)
Li2

(
1

ξ2

)]
, (12)

where ξ =
k2t
Q2 and we dropped the overall factor C = −2α3

s

√
2GFQ

2

3π3 , where
Q2 is the virtuality of the Higgs boson. We notice that in this result, after
the renormalization, there is a residual infrared singularity. This singularity
must vanish once we put together the virtual and the real contributions and
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it will be an important cross-check. We also notice that, while in the coeffi-
cient of the pole there is no dependence on the regularization parameter δ,
in the finite part we still have some ln(δ). These logs must cancel once we
put together the virtual and the real contributions and will provide another
cross-check.

3. Outlooks

We computed the virtual one-loop contribution to the Higgs-induced DIS
with the incoming gluon off-shell in the light-cone gauge. We particularly
focused on the understanding of the light-cone gauge and its properties.
We introduced a way to deal with spurious singularities and non-covariant
integrals.

To give a complete result, that will be useful in the resummation of the
coefficient function of this process up to NLL accuracy, there are still some
steps that have to be done that will be presented in following works. First
of all, we have to compute the real contribution to this process which will
also allow us to do many cross-checks. Moreover, we have to understand
how to deal with the sum over the polarizations of the incoming gluon that
is off-shell. We aim to write it in a process-independent way that will select
the dominant part in the high-energy region and will give the correct result
in the on-shell limit.
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