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Soft hadronic collisions with multiple production of (anti)quarks ac-
companied by soft photon radiation are described in terms of higher Fock
states of the colliding hadrons, which contain a photon component as well.
The Fock state distribution functions are shaped with the Quark–Gluon
String Model. Photon radiation by quarks is described within the color-
dipole phenomenology. The results of calculations are in good accord with
available data in a wide range of transverse momenta of the photons.
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1. Introduction

It was demonstrated in [1] that the bremsstrahlung model (BM) [2], used
as a reference for comparison with the production rate of small-kT photons
radiated in inelastic hadronic collisions at high energy, is incorrect, what led
to the so-called soft photon puzzle (see e.g. in [3]). Therefore, an alternative
description of soft photon radiation is required.

2. Parton model description at a hard scale

Within the parton model radiation of a heavy photon of mass M (Drell–
Yan) in the target rest frame, based on the factorization theorem, has the
following form:
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with the standard notations, α = pγ+/p
q
+; x1x2 = M2/s; x1 − x2 = xF.

The hard perturbative scale is imposed by the large invariant mass M
of the photon (dilepton). The sum of the (anti)quark distribution function
in (1) is given by the well-measured proton structure functions F2(x,M

2).
The parton distribution functions in the colliding hadrons are illustrated by
a parton comb in Fig. 1.

Fig. 1. Space-time pattern of particle production at high energies.

3. Parton model at a soft scale

Extrapolation of expression (1) to the soft regime is a challenge since
involves unknown nonperturbative effects. That can be done only within
models. For the quark distribution function, we rely on the popular and
successful quark–gluon string model (QGSM) [4, 5] or a similar dual parton
model [6, 7]. Both models assume the Regge behavior at the end-points
x → 1 or x → 0 of the quark distribution functions, and a simple, but ad
hoc, interpolation at medium x. We skip the simple, but lengthy expressions.
The details can be found e.g. in [5].

The last factor in the radiation cross section (1) dσ(qfN → γX)/d lnα/
d2kT is calculated at the soft scale within the color dipole phenomenology
[8–13], adjusted to precise data on DIS from HERA,
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The quark–photon distribution function reads

Ψγq(α, r⃗ ) =

√
αem

2π
χf ÔχiK0(αmqr) , (4)

and
Ô = e⃗ ∗

{
imqα

2 [n⃗× σ⃗] + α
[
σ⃗ × ∇⃗

]
− i(2− α)∇⃗

}
. (5)

The q̄q dipole–nucleon cross section σq̄q(r) in (3) has been parametrized
and fitted to DIS and photoproduction data from NMC and HERA. The
details can be found in [10].

Combining the QGSM distribution functions with the cross section (2)
results in the radiation cross section, which is parameter-free (we do not fit
the data to be explained), either in the shape of kT distribution or in the ab-
solute values. We assumed a primordial transverse momentum distribution
of the incoming quarks to have a Gaussian shape with

√
⟨q2T⟩ = 0.35 GeV.

Correspondingly, the radiated photon acquires additional transverse momen-
tum k⃗′T = αq⃗T.

4. Comparison with data

The results of calculations are compared with data on the radiative cross
section of π+p → γ +X from the NA22 experiment at Elab = 250 GeV in
Fig. 2, and from WA91/WA83 experiments at Elab = 280 GeV in Fig. 3.

We see no sizable deviation from data at small kT, i.e. no anomalous
enhancement of soft photons.
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Fig. 2. Comparison with data of the NA22 experiment [14] for π+p → γX at
Elab = 250 GeV.
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Fig. 3. Comparison with data of the WA83 [15] and WA91 [16] experiments for
π+p → γX at Elab = 280 GeV.

At somewhat higher energy Elab = 450 GeV [17], our calculations de-
picted by the solid curve in Fig. 4 apparently overestimate the data of the
WA102 experiment. However, the experiment had specific cuts, namely,
events with a number of charge tracks Nch > 8 were excluded. To calculate
the multiplicity distribution, we assume the Poisson distribution of a num-
ber of unitary cut Pomerons and employed the result of QGSM [18]. Thus,
we obtained a suppression factor

δ =

∑8
Nch=0∑∞
Nch=0

= 0.39 . (6)

The dashed curve, which incorporates this factor, agrees well with the data.
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Fig. 4. Comparison with data of the WA102 [17] experiment for π+Be → γX at
Elab = 450 GeV.
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5. Conclusions

— The observed enhancement of low-kT photons in comparison with in-
correct calculations should not be treated as a puzzle.

— The parton model description of photon radiation is extrapolated to
the soft scale regime. The (anti)quark distribution functions are evalu-
ated within the popular quark–gluon string model, based on the Regge
phenomenology.

— Soft photon bremsstrahlung by projectile quarks is calculated within
the color–dipole model. The quark–antiquark dipole cross section is
fitted to DIS and soft photoproduction data in a wide range of trans-
verse dipole separations and energies.
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