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We introduce Graniitti, a new Monte Carlo event generator designed
especially to solve the enigma of glueballs at the LHC. We discuss the
available physics processes, compare the simulations against STAR data
from RHIC, and span ambitious future directions towards the first diffrac-
tive event generator with a deep learning-enhanced computational engine.
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1. Introduction

Central-exclusive high-energy proton–proton processes probe in a unique
way the non-perturbative structure and dynamics of quantum chromody-
namics (QCD) via coherent diffractive exchanges. One of the most enig-
matic questions on this topic is the nature of glueballs, the non-Abelian
bound states of gluons. Since their prediction shortly after the discovery
of QCD, no strong experimental evidence has been found. It is expected
that their experimental discovery requires paying attention to special ‘glue-
rich’ production processes such as diffraction and dedicated measurements
simultaneously in several hadronic decay channels.

Current experiments at the LHC and RHIC are well suited to answer this
question in the low-mass domain of fully exclusive (with forward protons)
and semi-exclusive (forward protons dissociated) double-Pomeron-exchange
mediated scattering processes. Interpreting the finite acceptance fiducial
cross-section measurements requires a Monte Carlo event generator capable
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of simulating the required dynamical structure with exact kinematics. Es-
pecially the spin-parity structure of produced resonances and correlations
between the forward protons and central decay products are crucial. Grani-
itti is the first public Monte Carlo event generator [1] which addresses these
issues.

In Section 2, we briefly introduce the physics processes which can be
simulated with Graniitti, in Section 3, we compare simulations against recent
differential cross-section measurements done in the STAR experiment at
RHIC, and conclude in Section 4 with future directions in terms of novel
deep learning technology for high-energy diffraction.

2. Physics processes

Graniitti1 is designed bottom-up for pp → p(∗)+X+p(∗) processes, espe-
cially for the Regge domain where the scattering momentum transfer invari-
ants |t1|, |t2| are much smaller than center-of-mass energy squared s. Spe-
cial emphasis is put on the non-perturbative production of a low-mass sys-
tem X, where glueballs are expected. The current version supports proton–
proton initial states. However, the simulator architecture easily generalizes
to hadron–ion and lepton–hadron processes in the future. The following
main soft process amplitudes are available:

— Minimal Pomeron: a meson or baryon pair 2 → 4 continuum ampli-
tudes [2] together with the Jacob–Wick helicity amplitudes for reso-
nance decays and forward proton spin correlations, using the numerical
Wigner 3j algebra. For an illustration of distributions, see Fig. 1.

— Tensor Pomeron: fully covariant 2 → 4 amplitudes [3] for meson or
baryon pairs both continuum and resonances, based on C++ template
Lorentz algebra from numerical General Relativity and Dirac spinor
algebra. For an illustration of distributions, see Fig. 2.

In addition to the soft QCD processes, the generator includes also kT-
EPA gamma flux driven gamma–gamma SM electroweak processes and the
Durham model-based hard QCD scattering amplitudes together with the
Sudakov suppression integral factor and ‘Shuvaev transformed’ gluon parton
distributions based on numerical integral transforms of Lhapdf6 gluon pdfs.
MadGraph 5 amplitude import in C++ format is supported for gamma–
gamma processes. All processes can be generated either with elastic or
inelastic forward protons and the differential screening (absorption) eikonal
Pomeron loop amplitude turned on, which is crucial for cross sections. For

1 Available at https://github.com/mieskolainen/graniitti (MIT and GPLv3 li-
cense).
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Fig. 1. Minimal Pomeron: Angular distribution cos(θ) of π+ in the Collins–Soper
frame for different diagonal spin polarization components (left). Forward proton
pT-vector difference (right). For details, see [1].

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
) [GJ frame]θCentral final state cos(

5−10

4−10

3−10

2−10

1−10

1

10b)µ
) 

 (
θ

/d
co

s(
σd

: <02>2f

: <20> - <22>2f

: <20> + <22>2f

: <24>2f

: <42>2f

: <44>2f

: <64>2f

1.
00

G
R

A
N

IIT
T

I 
〉

g
it

h
u

b
.c

o
m

/m
ie

sk
o

la
in

en
〈

 > 0.15 GeV
T

| < 2.5, pη = 13 TeV, |s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
)2 (GeV1Mandelstam -t

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210)2
b/

G
eV

µ
/d

t  
(

σd

: <02>2f

: <20> - <22>2f

: <20> + <22>2f

: <24>2f

: <42>2f

: <44>2f

: <64>2f

1.
00

G
R

A
N

IIT
T

I 
〉

g
it

h
u

b
.c

o
m

/m
ie

sk
o

la
in

en
〈

 > 0.15 GeV
T

| < 2.5, pη = 13 TeV, |s

Fig. 2. Tensor Pomeron: Angular distribution cos(θ) of π+ in the Gottfried–Jackson
frame (left) and Mandelstam −t1 for 7 spin-2 couplings (right). For details, see [1].

diagrammatic illustrations, see Fig. 3. In terms of kinematics and Monte
Carlo, the full 2 → N process is first constructed to be exact for 2 → 3
process which results in a lengthy polynomial expression due to three variable
final masses, i.e. forward dissociation is allowed and importance sampled
using Vegas together with custom analytic Jacobians. The central system
phase space 1 → N −2 is then further treated exactly with Rambo, utilizing
exact recursive phase-space factorization.
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Fig. 3. Pomeron–gamma resonance, Pomeron–Pomeron → central hadron pair +
one excited forward proton p∗ and Pomeron–Pomeron resonance to a four-body
central state. kT is the screening loop 2D-momentum. For details, see [1].

Beyond the set of readily available scattering amplitudes or matrix el-
ements, arbitrary cascaded decay channels can be generated according to
Breit–Wigner resonance weights × phase space with a decay chain inter-
preter and steering cards. Cascaded 1 → 2 resonance decays with ar-
bitrary spin-parity combinations according to conservation laws are sup-
ported, where the spin dynamics and resulting correlations are computed
using Jacob–Wick helicity amplitudes and user-adjustable couplings. These
cascaded decay chains allow probing a different spin and parity hypothesis
of the resonant central state, e.g. in decays of X → ρ0ρ0 → 2× (π+π−).

3. Comparisons with STAR data

We compare the Graniitti minimal Pomeron model results with differen-
tial cross-section measurements of charged pion and kaon pairs with mea-
sured forward protons from the STAR experiment at RHIC [4]. These mea-
surements include also proton–antiproton central pairs, which can be simu-
lated. The fiducial cuts are as described for the most inclusive case in [4].
Data includes statistical, systematic, and luminosity uncertainties summed
in quadrature. A partial tune of the resonance couplings and continuum off-
shell form factor has been done against the data here, leaving other soft pa-
rameters fixed such as the continuum couplings and eikonal Pomeron model.
The simulations follow data in Figs. 4 and 5, with an exception of the high-
mass pion pair tail, indicating the need for further work on the screening
loop effect versus the continuum amplitude (the form factor, parameters),
and its possible perturbative descriptions and their matching.

Interestingly, the data suggests for resonances f2(1270) and f
′
2(1525)

opposite spin-2 polarization of Jz ≃ ±2, and Jz ≃ 0 in the Collins–Soper
(CS) frame, respectively. More differential angular distributions and e.g.
spherical harmonics analysis [1] would be required for further conclusions in
terms of glueball and hybrid quark–gluon state candidates.
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Fig. 4. The central system invariant mass in π+π− (left) and K+K− (right).
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Fig. 5. Forward proton ∆ϕpp (left) and CS-frame angle cos(θ) of π+ (right).

4. Computational technology towards deep learning

Graniitti engine code is written in fully multithreaded C++17, enabling
maximum CPU core utilization up to an unlimited number of threads.
Standard grid computing tools are naturally also supported, such as pre-
computed integration arrays and different random seeds. Event output in
the latest HepMC3 format is provided. The crucial soft scattering amplitude
parameter fitting or ‘tuning’ challenge is accelerated using a novel approach.
We have interfaced a cutting-edge Raytune library via Python steering code,
which allows HPC-cluster distributable tuning of the event generator against
the Durham HEPData input. Raytune is used heavily in deep learning, espe-
cially in a gradient-free neural network model hyperparameter tuning and
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reinforcement learning. The underlying global optimization algorithms are
based on Bayesian optimization and evolutionary-type schemes. Next, we
outline ambitious steps towards the first deep learning-enhanced diffractive
event generator.

First, understanding the proton structure fluctuations beyond integrated
representations of proton form factors and parton distributions requires novel
approaches for diffraction aka ‘deep Pomeron’. Generative deep learning
techniques such as deep diffusion models based on non-equilibrium Langevin
stochastics combined with deep neural networks provide a promising novel
avenue to accomplish this goal, especially when the data-driven approach is
combined with the lattice field theory input.

Second, the Pomeron–Pomeron resonance 3-point vertex of low-mass cen-
tral production is highly non-perturbative and would be an excellent target
to be learned directly from data using neural networks fitted against differ-
ential measurements, preferably event-by-event data such as CERN Open
Data. Networks incorporating explicit Lorentz equivariance would be a nat-
ural choice for this task. Assuming the set of functions for resonances with
different quark–gluon content would be universal, the learned neural vertices
would allow predictive power via recycling the learned functions.

Third, to be able to accelerate the Monte Carlo integration and event
generation efficiency, new methods beyond dimension-by-dimension factor-
ized Vegas or phase-space multichanneling are required. We have done pre-
liminary studies in terms of invertible high-dimensional change of variable
transformations, known as normalizing flows, which are chains of learned
Jacobians with a fast analytic log-determinant. The results are promising,
but the challenge is in fully generic solutions which may require a new type
of flow layers due to challenging multiparticle Lorentz manifolds.

REFERENCES

[1] M. Mieskolainen, arXiv:1910.06300 [hep-ph].
[2] L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, Eur. Phys. J. C 74, 2848

(2014).
[3] P. Lebiedowicz, O. Nachtmann, A. Szczurek, Phys. Rev. D 97, 094027

(2018).
[4] J. Adam et al., J. High Energy Phys. 2020, 178 (2020).

http://arxiv.org/abs/arXiv:1910.06300
http://dx.doi.org/10.1140/epjc/s10052-014-2848-9
http://dx.doi.org/10.1140/epjc/s10052-014-2848-9
http://dx.doi.org/10.1103/PhysRevD.97.094027
http://dx.doi.org/10.1103/PhysRevD.97.094027
http://dx.doi.org/10.1007/JHEP07(2020)178

	1 Introduction
	2 Physics processes
	3 Comparisons with STAR data
	4 Computational technology towards deep learning

