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Central diffractive event topologies at the LHC energies can be identi-
fied by two different approaches. First, the forward scattered protons can
be measured in Roman pots. Second, a veto on hadronic activity away
from midrapidity can be imposed to define a double-gap topology. Such
a double-gap topology trigger has been implemented by the ALICE Col-
laboration in Run 1 and Run 2 of the LHC. The analysis of these events
allows to determine the charged-particle multiplicity within the acceptance.
The excellent particle identification capabilities of ALICE allows to study
two-track events both in the pion and kaon sector. Events with measured
charged particle multiplicity larger than two can arise from multiple pair
production. A Regge-based approach for modeling such multiple pair pro-
duction is presented.
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1. Introduction

The double-Pomeron fusion at hadron colliders results in a double-gap
event topology. Such a topology is defined by hadronic activity at or close
to midrapidity, and the absence thereof away from midrapidity. The mul-
tiplicity distribution of such double-gap events has been measured in the
ALICE central barrel. To better understand such multiplicity distributions,
we present here a Regge-based approach for multiple pion pair production
in double-Pomeron events. This model is based on a Dual Amplitude with
Mandelstam Analyticity (DAMA) [1]. In this approach, the production of
multiple pairs can be modeled by including a Pomeron–Pomeron–Reggeon
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and a triple-Pomeron coupling. The amplitude at Pomeron level within his
DAMA formulation is given, and the resulting mass distributions for double
pion and double b-resonance production are shown.

2. Multiplicity distribution of double-gap events

The charged-particle multiplicity in the ALICE central barrel has been
analyzed in the LHC Run 1 for both minimum bias and double-gap events [2].

In Fig. 1, the probability of being a double-gap event is shown as a func-
tion of the charged-particle multiplicity Nch in the ALICE central barrel.
The ALICE data are shown in black circles, whereas the results from Monte
Carlo generators are shown in different colors. These probabilities clearly
show a maximum at Nch = 1 and Nch = 2, demonstrating that double-
Pomeron events are dominated by very low multiplicities as compared to
minimum bias events. As indicated in this figure, none of the tested gener-
ators shows reasonable agreement with the data. This discrepancy between
the ALICE measured double-gap events and the prediction of the tested
generators motivates the development of a model which can be used to ana-
lyze unlike-sign two-track events resulting from single resonance decays, as
well as the higher-multiplicity events stemming from the decays of multiple
resonances.

0 2 4 6 8 10

)
ch

(n
M
in
B
ia
s

N

)
ch

(n
D
G

N
)=

ch
(n

D
G

R

-610

-510

-410

-310

-210
Data

Tuned Pythia6

Tuned Phojet

Pythia6

Phojet

Phojet w/o CD

Phojet CD only

chN
0 2 4 6 8 10

R
at
io
M
C
to

D
at
a

-110

1

10

Fig. 1. Double-gap probability in the ALICE central barrel as a function of charged-
particle multiplicity. (Figure taken from Ref. [2].)
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3. A Regge model for double-Pomeron events

The model for Pomeron–Pomeron-induced events presented in the fol-
lowing is based on the DAMA approach. Pomeron-induced single-resonance
production has been presented in our previous studies [3, 4]. Here, we extend
this DAMA approach to the production of multiple resonances.

In Fig. 2, the amplitude for Pomeron-induced single-resonance produc-
tion at hadron level is shown on the left. The subdiagram on the right
presents the amplitude for Pomeron–Pomeron → resonance. The cross sec-
tion at hadron level is derived by convoluting the subdiagram cross section
with the Pomeron flux of the proton F P

prot(t, ξ) defined by

F P
prot(t, ξ) =

9β2
0

4π2
[F1(t)]

2ξ1−2α(t) , (1)

with F1(t) the elastic form factor and α(t) the Pomeron trajectory [3].
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Fig. 1. Amplitude at hadron level (left), and Pomeron subdiagram (right).Fig. 2. Amplitude at hadron level (left), and the Pomeron subdiagram (right).

In the DAMA approach, multiple-resonance production can be modeled
by introducing a Pomeron–Pomeron–Reggeon (PPR) coupling with subse-
quent splitting of the intermediate Reggeon into the two final-state Reggeons.
Alternatively, the same final state can be formed by a triple-Pomeron (PPP)
coupling with the intermediate Pomeron decaying into the two Reggeons.

The DAMA amplitude for the subdiagram shown in Fig. 3 is given by

APP→S̃1S̃2

(
s̃, t̃,M2

1 ,M
2
2

)
=

1√
M2

1M
2
2

∑
PPR,PPP

∑
n

gigje
bα(t̃ )

n− α(s̃)
, (2)

with the first summation over the two amplitudes of Fig. 3 defined by the
PPR coupling with gi,gj = g1,g2 and the PPP coupling with gi,gj = g3,g4.
The index n sums over the spins of the resonances of the intermediate trajec-
tory which connects the vertices i, j. From this amplitude, the cross section
at Pomeron level is derived by the optical theorem

σt
(
s̃,M2

1 ,M
2
2

)
= Im A

(
s̃, t̃ = 0,M2

1 ,M
2
2

)
, (3)

with the imaginary part of A(s̃, t̃,M2
1 ,M

2
2 ) defined by αR(s̃) and αP(s̃) for

the PPR and the PPP diagrams of Fig. 3, respectively.
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Fig. 1. Subdiagram for PPR amplitude (left), and PPP amplitude (right).
Fig. 3. Subdiagram for the PPR amplitude (left) and the PPP amplitude (right).

4. Reggeizing qq̄ states in the light quark sector

The final-state mesons derive from the decay of the meson resonances
lying on the two Regge trajectories S̃1 and S̃2 as illustrated in Fig. 3. In or-
der to be able to include mesonic bound states of different radial and orbital
excitations, a unified description of qq̄ bound states in the different flavour
sectors is needed. Such a unified description of qq̄ bound states including a
confinement potential, a spin–orbit, a hyperfine, and an annihilation inter-
action is presented in Ref. [5]. The solutions for these qq̄ bound states are
given in spectroscopic notation n 2S+1LJ .

In Table 1, masses are presented for the isovector channel in the light
quark sector for the radial ground state for S-, P -, D-, F - and G-wave,
and are compared to the values given by the Particle Data Group [6]. The
S- and D-wave bound states calculated in Ref. [5] are identified with the
π and the π2 states of mass 140 and 1672 MeV, respectively. The P -wave
solution is associated with the known b1 state of the mass of 1230 MeV. No
candidates for the predicted F - and G-wave bound states have so far been
experimentally identified [6].

Table 1. Masses and widths in MeV. Spectroscopic notation n 2S+1LJ : n radial
quantum number, S spin, L orbital ang. momentum, J total ang. momentum.

n 2S+1LJ Mass PDG Mass Width

Ref. [5] (PDG) (PDG)

11S0 150 π 140 0

11P1 1220 b1 1230 142

11D2 1680 π2 1672 258

11F3 2030 — — —

11G4 2330 — — —
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5. Non-linear complex Regge trajectory

The small but existing non-linear dependence of the spin of a resonance
to its mass squared can be used to make a Regge trajectory α(M2) a complex
entity with real and imaginary parts being related by a dispersion relation [7].
Here, the real part is defined by the value of the spin, and the imaginary
part is related to the decay width Γ by Imα(M2

R) = Γ (MR)α
′ MR, with α′

denoting the derivative of the real part of the trajectory. In a simple model,
the imaginary part is chosen as a sum of single threshold terms

Im α(s) =
∑
n

cn(s− sn)
1/2

(
s− sn

s

)|Re α(sn)|
θ(s− sn) . (4)

In Eq. (4), the coefficients cn are fit parameters and the parameters sn
represent kinematical thresholds of decay channels.

5.1. The (π, b)-trajectory

A Regge trajectory, called the (π, b)-trajectory hereafter, is defined by
the values of mass and width of the S-, P -, and D-waves shown in Table 1.

In Fig. 4 on the left, the three data points of the π, b1, and π2 states
are shown by black points, and the non-linear fit by the blue line. On the
right, the widths of the π, b1, and π2 states are shown by black points, and
the fitted width function Γ by the blue line. The thresholds s0 and s1 used
in the fit of Eq. (4) are shown in red. The thresholds s0 = 0.176 GeV2

and s1 = 1.27 GeV2 are defined by the decays π2 → 3π and b1 → KK̄π,
respectively. This fit of the (π, b)-trajectory predicts a b3 state with the
mass of 2090 MeV and the width of 321 MeV, a π4 state with the mass
of 2437 MeV and the width of 352 MeV, and a b5 state with the mass of
2738 MeV and the width of 371 MeV.
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Fig. 4. Real part (π, b)-trajectory on the left, width function Γ on the right.
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6. The final-state resonance mass distribution

The (π, b)-trajectory consists of π- and b-resonances with quantum num-
bers (P,C) = (−,+), and (P,C) = (+,−), respectively. The final state
shown in Fig. 3 can hence contain two π-resonances or two b-resonances.

In Fig. 5, the two-dimensional distribution of squared masses is shown
for s̃ = 9 GeV2 for the case of two π-resonances on the left, and the corre-
sponding distribution for two b-resonances on the right. Here, s̃ denotes the
center-of-mass energy of the two initial-state Pomerons as shown in Fig. 3.
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Fig. 5. Two-dimensional mass distribution of the final-state resonances.
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