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The theory of Schwarzschild geodesics is revisited. Using a theorem
due to Weierstrass and Biermann, we derive concise formulas describing all
timelike and null trajectories in terms of Weierstrass elliptic functions. The
formulation given in this note uses an analogue of the so-called Mino time.
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1. Introduction and motivation

Since the discovery of the Schwarzschild metric, different ways of ex-
pressing solutions to the Schwarzschild geodesic equations have been devel-
oped [1–6]. In most cases, they differ in the assumed parametrization and
in the types of elliptic functions used to write the solution.

Our motivation for revisiting the theory of Schwarzschild geodesics is
related to works on the kinetic description of the Vlasov gas in the Schwarzs-
child spacetime and the accretion of the Vlasov gas onto Schwarzschild black
holes [7–13], Reissner–Nordström black holes [14], and Kerr black holes [15–
18]. In particular, aiming at constructing Monte Carlo type simulations of
the gas consisting of non-colliding particles moving around the Schwarzschild
black hole, we were searching for a concise description of all types of time-
like and null trajectories in the Schwarzschild metric, which would depend
explicitly on standard constants of motion (in particular, the energy and
the angular momentum) together with the initial location of the particle.
It turns out that such a description can be written in terms of Weierstrass
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elliptic functions, basing on a theorem due to Weierstrass and Biermann [19].
A detailed account of these results can be found in our recent paper [6]. This
note is intended to give a short summary, but, in comparison to [6], we use
a different parametrization. In [6], solutions are expressed in terms of the
so-called true anomaly; in this note, we use an analogue of the Mino time,
introduced originally for the Kerr geodesics in [20].

2. Geodesic equations

We work in standard Schwarzschild coordinates. The metric reads

g = −Ndt2 +
dr2

N
+ r2dθ2 + r2 sin2 θdφ2 , (1)

where
N = 1− 2M

r
, (2)

and M is the Schwarzschild mass. Geodesic equations can be written in the
form [6]

dr

ds̃
= ϵr

√
E2 − Ul,m(r) , (3a)

dθ

ds̃
=

ϵθ
r2

√
l2 − l2z

sin2 θ
, (3b)

dφ

ds̃
=

lz

r2 sin2 θ
, (3c)

dt

ds̃
=

E

N
, (3d)

where

Ul,m(r) =

(
1− 2M

r

)(
δm +

l2

r2

)
(4)

is the radial effective potential and E, l ≥ 0, lz denote constant values of the
particle energy, the total angular momentum, and the azimuthal component
of the angular momentum, respectively. The constant δm is defined as

δm =

{
m2 for timelike geodesics ,
0 for null geodesics ,

(5)

and the signs ϵθ = ±1 and ϵr = ±1 correspond to the directions of motion.
There is a convenient way to partially decouple the above equations,

which also works for the geodesic motion in the Kerr spacetime, and which
for the latter case was introduced by Mino in [20]. The trick is to reparame-
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trize geodesics so that

dxµ

ds̄
= r2

dxµ

ds̃
or s̃ =

s̄∫
0

r2ds . (6)

We will refer to the parameter s̄ as the Mino time. Additionally, to simplify
further calculations, we will work in dimensionless rescaled variables, defined
as in [7], i.e.,

t = Mτ , r = Mξ , pr = mπξ ,

pθ = Mmπθ , E = mε , l = Mmλ , lz = Mmλz . (7)

A new Mino time s is defined by

s̄ =
s

Mm
. (8)

In terms of these dimensionles variables, geodesic equations (3) can be
written as

dξ

ds
= ϵrξ

2
√

ε2 − Uλ(ξ) , (9a)

dθ

ds
= ϵθ

√
λ2 − λ2

z

sin2 θ
, (9b)

dφ

ds
=

λz

sin2 θ
, (9c)

dτ

ds
=

εξ2

N(ξ)
, (9d)

where N(ξ) = 1− 2/ξ. The dimensionless radial potential reads

Uλ(ξ) =

(
1− 2

ξ

)(
δ +

λ2

ξ2

)
= δ − 2

ξ
δ +

λ2

ξ2
− 2λ2

ξ3
, (10)

where

δ =

{
1 for time-like geodesics ,
0 for null geodesics .

(11)

3. Biermann–Weierstrass theorem

Solutions given in this work are based on the following result due to
Biermann and Weierstrass. The original formulation of this theorem has
been published in [19]. More detailed proofs can be found in [6, 21, 22].
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Theorem 3.1 Let

f(x) = a0x
4 + 4a1x

3 + 6a2x
2 + 4a3x+ a4 (12)

be a quartic polynomial. Denote the invariants of f by g2 and g3, i.e.,

g2 ≡ a0a4 − 4a1a3 + 3a22 , (13a)
g3 ≡ a0a2a4 + 2a1a2a3 − a32 − a0a

2
3 − a21a4 . (13b)

Let

z(x) =

x∫
x0

dx′√
f(x′)

, (14)

where x0 is any constant, not necessarily a zero of f(x). Then

x = x0 +
−
√
f(x0)℘

′(z) + 1
2f

′(x0)
[
℘(z)− 1

24f
′′(x0)

]
+ 1

24f(x0)f
′′′(x0)

2
[
℘(z)− 1

24f
′′(x0)

]2 − 1
48f(x0)f

(4)(x0)
,

(15)
and

℘(z) =

√
f(x)f(x0) + f(x0)

2(x− x0)2
+

f ′(x0)

4(x− x0)
+

f ′′(x0)

24
, (16a)

℘′(z) = −
[

f(x)
(x−x0)3

− f ′(x)
4(x−x0)2

]√
f(x0)−

[
f(x0)

(x−x0)3
+ f ′(x0)

4(x−x0)2

]√
f(x) ,

(16b)

where ℘(z) = ℘(z; g2, g3) is the Weierstrass function corresponding to in-
variants (13).

4. Solutions

4.1. Solution for ξ(s)

Equation (9a) can be rewritten in the Weierstrass form

dξ

ds
= ϵr

√
f(ξ) , (17)

where
f(ξ) = a0ξ

4 + 4a1ξ
3 + 6a2ξ

2 + 4a3ξ + a4 , (18)

and

a0 = ε2 − δ , 4a1 = 2δ , 6a2 = −λ2 , 4a3 = 2λ2 , a4 = 0 .
(19)
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For a segment of the trajectory from ξ0 to ξ, we get

s = ϵr

ξ∫
ξ0

dξ′√
f(ξ′)

, (20)

where ξ0 is a reference radius corresponding to s = 0. Weierstrass invariants
of the polynomial f read

g2 =
1

12
λ4 − δλ2 , (21a)

g3 =
1

63
λ6 − δ

12
λ4 − 1

4

(
ε2 − δ

)
λ4 . (21b)

Therefore, thanks to the Biermann–Weierstrass theorem, we can write the
formula for ξ = ξ(s) as

ξ(s) = ξ0 +
−ϵr

√
f(ξ0)℘

′(s) + 1
2f

′(ξ0)
[
℘(s)− 1

24f
′′(ξ0)

]
+ 1

24f(ξ0)f
′′′(ξ0)

2
[
℘(s)− 1

24f
′′(ξ0)

]2 − 1
48f(ξ0)f

(4)(ξ0)
.

(22)
Here, ℘ is understood to be defined by the invariants g2, and g3 given by
Eq. (21), i.e., ℘(z) = ℘(z; g2, g3), and f is defined in Eqs. (18) and (19).

The above equation is a general solution to Eq. (17), valid for all types
of allowed trajectories. One can moreover show that Eq. (22) gives a correct
solution also in the presence of turning points. In this case, the sign ϵr in
Eq. (22) has to be interpreted as referring to the initial position ξ0 (in other
words, ϵr can be treated as a part of initial data).

4.2. Solution for θ(s) and φ(s)

Equation (9b) can be integrated in a straightforward way. Substituting
µ = cos θ, we get

s = ϵθ

θ∫
θ0

1√
λ2 − λ2

z

sin2 θ̃

dθ̃ = −ϵθ
λ

µ∫
µ0

1√
1− λ2

z
λ2 − µ̃2

dµ̃

= −ϵθ
λ

arcsin
µ√

1− λ2
z

λ2

− arcsin
µ0√
1− λ2

z
λ2

 ,

where µ0 = cos θ0 correspond to a reference point. Setting

β0 =
ϵθ
λ
arcsin

µ0√
1− λ2

z
λ2

,
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one gets

µ(s) = −ϵθ

√
1− λ2

z

λ2
sin [λ(s− β0)] . (23)

Equation (9c) can be now integrated as

φ(s)− φ0 = λz

s∫
0

1

sin2 θ(s̃)
ds̃ = λz

s∫
0

1

1− µ(s̃)2
ds̃

= arctan

[
λz

λ
tan[λ(s− β0)]

]
+ arctan

[
λz

λ
tan(λβ0)

]
,

where we have used Eq. (23), and φ0 = φ(0). The above expression can be
corrected for discontinuities due to the tangent function. The final formula
has the form

φ(s) = φ0+arctan

[
λz

λ
tan[λ(s− β0)]

]
+arctan

[
λz

λ
tan(λβ0)

]
+nπ sgnλz ,

(24)
where n is an integer part of λ

π (s − β0) ± 1
2 . Here, the plus corresponds to

s > 0 and the minus to s < 0.

4.3. Solution for τ(s)

A direct integration of Eq. (9d) yields

τ(s)− τ(0) = ε

s∫
0

ξ(s̃)2

1− 2
ξ(s̃)

ds̃ = ε

s∫
0

(
ξ(s̃)2 + 2ξ(s̃) + 4 +

8

ξ(s̃)− 2

)
ds̃ .

These integrals can be computed by substituting expression (22) for ξ(s),
however the result may be too complicated and impractical. Instead, we
will focus on a simpler case, in which a turning point can be chosen as a
reference point.

Let ξ1 denote the radius of the turning point, so that f(ξ1) = 0. Choosing
ξ1 as a reference radius corresponding to s = 0, one can rewrite Eq. (22) as

ξ(s) = ξ1 +
1
4f

′(ξ1)

℘(s)− 1
24f

′′(ξ1)
(25)

irrespectively of the radial direction of motion, i.e., the value of ϵr. The
coordinate time elapsed during the motion from s = 0 to s = s2 can be
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written as

τ∗(s2; ξ1) = ε

s2∫
0

 ξ31
ξ1 − 2

+
ξ1+1
2 f ′(ξ1)

℘(s̃)− ℘(y)
−

2
(ξ1−2)2

f ′(ξ1)

℘(s̃)− ℘(z)

+
1
16f

′(ξ1)
2

[℘(s̃)− ℘(y)]2

}
ds̃ , (26)

where ℘(y) = 1
24f

′′(ξ1) and ℘(z) = 1
24f

′′(ξ1)− f ′(ξ1)
4(ξ1−2) . One can choose any

values y and z satisfying these conditions. Integral (26) can be computed
with the help of the following two integral formulas ([23], p. 312 and [24],
p. 626):

I1(x; y) =

∫
dx

℘(x)− ℘(y)
=

1

℘′(y)

[
2ζ(y)x+ ln

σ(x− y)

σ(x+ y)

]
, (27)

I2(x; y) =

∫
dx

(℘(x)− ℘(y))2
= − ℘′′(y)

℘′3(y)
ln

σ (x− y)

σ (x+ y)

− 1

℘′2 (y)

{
ζ (x+ y) + ζ (x− y) +

[
2℘ (y) +

2℘′′ (y) ζ (y)

℘′ (y)

]
x

}
,

(28)

where ζ(x) and σ(x) denote the Weierstrass functions ζ(x; g2, g3) and
σ(x; g2, g3), respectively. Hence, we obtain

τ∗(s2; ξ1) = ε

{
ξ31

ξ1−2
s2 +

ξ1 + 1

2
f ′(ξ1) [I1(s2; y)− I1(0; y)]

− 2f ′(ξ1)

(ξ1−2)2
[I1(s2; z)− I1(0; z)] +

f ′(ξ1)
2

16
[I2(s2; y)− I2(0; y)]

}
.

(29)

In general, to obtain a continuous expression for τ∗, one has to be careful
in selecting appropriate branches of the logarithms appearing in Eqs. (27)
and (28).

As an example, consider a motion of a particle starting from an arbitrary
location ξ0 and moving inwards until it reaches a periapsis with the radius ξ1
(thus f(ξ1) = 0). Next, the particle moves outwards up to a location with
a radius ξ. Denote the Mino time needed for the motion from ξ0 to ξ1 by
s1 and the Mino time needed for the motion from ξ1 to ξ by s2. Thanks to
symmetry, the coordinate time of the entire motion can be written as

τ(s) = τ∗(s1; ξ1) + τ∗(s2; ξ1) = τ∗(s1; ξ1) + τ∗(s− s1; ξ1) , (30)

where s = s1 + s2.
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The value s1 can be computed from Eq. (20). The integral in Eq. (20)
can be expressed in terms of the Legendre elliptic integrals, but the exact
form of the result depends on a type of particle trajectory. For an unbound
scattered trajectory

s(ξ1) = ϵr

∞∫
ξ1

dξ√
f(ξ)

=
ϵr√

y3−y1

F
arccos

√
y2+

1
12−

1
2ξ

y2−y1
, k

−F

arccos

√
y2+

1
12

y2−y1
, k

 ,

(31)

where y1 < y2 < y3 are real zeros of the polynomial 4y3 − g2y − g3, and
k2 = (y2 − y1)/(y3 − y1). A longer discussion of this result can be found
in [6, 9], where it is referred to as the elliptic X function. A comprehensive
discussion of the classification of orbits and different expressions for the
integral in (20) can be found in [3, 5].

5. Conclusions

We have revisited the theory of timelike and null geodesics in the
Schwarzschild spacetime. A novel aspect of our study is an application
of the Biermann–Weierstrass theorem, providing a single formula describ-
ing bound and unbound geodesic orbits. More details on this approach can
be found in our recent article [6]. In [6], geodesics are parametrized using
the so-called true anomaly — an angle measured within the orbital plane.
Here, we introduce a parametrization by an analogue of the Mino time, com-
monly used in the theory of the Kerr geodesics. The solutions formulated in
this way can serve as limiting expressions for Kerr geodesics in the limit of
non-spinning black holes.

This work was partially supported by the National Science Centre,
Poland (NCN) grant No. 2017/26/A/ST2/00530.
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