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It is not only known that hairy black holes can exist in asymptotically
Anti-de Sitter (AdS) spaces, but also that in the context of the Anti-de Sit-
ter/Conformal Field Theory (AdS/CFT) correspondence, such black holes
can be interpreted as holographic duals of superfluids. After a perturba-
tion, these black holes usually exhibit an exponentially damped ringing
down described by quasi-normal modes, however, we will show that for
perturbations around the exact critical point that characterizes the onset
of the formation of scalar hair, this relaxation will exhibit a power law
behaviour at late times. We will also explain how this can be interpreted
through the lens of the AdS/CFT correspondence.

DOI:10.5506/APhysPolBSupp.16.6-A12

1. What is AdS/CFT?

As a concrete realisation of the more general holographic principle (see [1]
for a review), the so-called AdS/CFT correspondence [2] posits that the
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physics of certain conformal field theories (CFTs, referred to as the “bound-
ary”) can be equivalently encoded in the gravitational physics of a higher
dimensional Anti-de Sitter space (AdS, referred to as the “bulk”), see Fig. 1
for illustration.

Fig. 1. Illustration of the AdS/CFT correspondence, here in the case of a three-
dimensional bulk (with coordinates t, ϕ, r) and a two-dimensional boundary. As
AdS space is negatively curved, the “boundary” is only an asymptotic boundary.
In the chosen coordinate system, the t = 0 slice of the spacetime is mapped to a
Poincaré disk.

The importance of the AdS/CFT correspondence is that it is a powerful
concept that allows translating questions concerning one of the sides into the
language of the other, where a new perspective on the problem can be gained,
or where different mathematical methods may be at one’s disposal. For
example, AdS/CFT has been used as a tool to investigate out-of-equilibrium
physics in the strongly coupled regime [3].

Here, we will be concerned specifically with a class of models commonly
referred to as holographic superconductors, first introduced in a series of
papers [4–6]. In the case of a four-dimensional bulk, the typical action of
such a model reads [4–6]

S = Sgrav +
1

2κ2

∫
dx4

√
−g

[
− 1

4 q2
FµνF

µν − |Dφ|2 −m2|φ|2
]
. (1)

Here, a massive complex scalar field φ charged under a U(1) gauge field Aµ
(F = dA) is coupled to an Einstein–Hilbert action (Sgrav) with a negative
cosmological constant. The latter is necessary for AdS/CFT to ensure that
the negatively curved Anti-de Sitter spacetime is the appropriate vacuum.

While there are many technical details that could be explored in this
context, the basic idea is as follows:

As its Hawking temperature is lowered, the AdS–Reissner–Nordström
black hole becomes unstable against the formation of scalar hair via a second-
order phase transition that takes place at a critical temperature Tc. I.e.,
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for T < Tc, there will be a new stable solution with φ ̸= 0. As we have
explained above, in the context of the AdS/CFT correspondence we are
invited to interpret everything that happens in the bulk gravity system also
through the perspective of a boundary theory, and vice versa. So what
is the boundary perspective on the formation of scalar black hole hair in
the bulk? This corresponds to a spontaneous symmetry breaking of the
U(1) symmetry by a scalar order parameter similar to what happens in a
superconductor or superfluid, hence the nomenclature for this type of model.
In fact, we can use the rules of the holographic dictionary derived in [2, 7, 8]
to read off from the asymptotic expansion of the bulk fields φ and Aµ near
infinity specific values corresponding to the expectation value of a complex
order parameter ⟨O⟩, a chemical potential which we call At, and a charge
density ρ of the putative superconductor model which is holographically dual
to the bulk system according to the AdS/CFT correspondence. Likewise,
the Hawking temperature of the black hole corresponds to the temperature
of the dual field theory model.

Instead of changing the (Hawking) temperature and keeping other pa-
rameters constant, it is technically more convenient to keep the temperature
constant1 and change other parameters, such as the charge density ρ. The
second-order phase transition to a phase with non-zero condensate (analo-
gous to a superconducting phase) then happens at ρ = ρc ≈ 4.06371. See
our publication [9] and citations therein for more details.

2. Critical relaxation in holographic superconductors

The goal of our paper [9], on which these proceedings are based, was
to study how the holographic superconductor relaxes to its new equilibrium
state after the parameter ρ is suddenly changed (also called quenched) to a
value either exactly at ρ = ρc or close to it.

The motivation for this comes from the earlier paper [10], where a holo-
graphic model of the Kondo effect was studied, which shares many qual-
itative similarities with the holographic superconductors discussed above,
including the existence of a second order-phase transition at which a scalar
field in the bulk develops a non-zero value. We found there that in general,
the relaxation of the system after a quench follows an exponential decay law
(similar to so-called quasi-normal-modes, or QNMs), where the half-life time
of the exponential decay diverges as the end state is brought close to the
phase transition, a phenomenon well known as critical slowing down [11]. In-

1 In fact, for the sake of simplicity, we keep the entire bulk metric fixed and only study
the equations of motion of the matter fields on a fixed curved background spacetime
for now. We hope to come back to the full problem including backreaction in the
future.
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terestingly, after exactly critical quenches, where formally the half-life time
is infinite, we observed a power law decay of the modulus of the complex
order parameter, with oscillations of its complex phase that were periodic
on a logarithmic time axis. The latter phenomenon is associated with the
emergence of a discrete scale invariance. This phenomenon has also been
observed in a diverse set of physical systems [12], including the formation of
black holes through critical collapse [13]. In fact, the discretely scale invari-
ant complex phase oscillations found in [10] are particularly similar to the
ones found in the critical collapse of a charged scalar field in [14].

Thus, our goal in [9] was to investigate whether, after exactly critical
quenches, a similar discrete scale invariance would occur in the well-known
holographic superconductor models, and whether a precise understanding of
it could be provided mathematically.

After some extensive numerical simulations, we observed that indeed dis-
crete scale invariance does appear in the relaxation after the exactly critical
quenches: Writing the (now time-dependent) complex order parameter as
(up to a trivial prefactor) ⟨O⟩ ∝ Ψ(t) = ϕ(t) eiψ(t), we found power law de-
cays for the time-dependent quantities ϕ(t) and A(t)−ρc, while the complex
phase (which is of course only defined modulo 2π) ψ(t) behaved as ∼ log(t)
— the expected signature of discrete scale invariance.

Fig. 2. Numerical results for |At(t)−ρc| (bottom frame, dashed curve), |⟨O⟩| ≡ ϕ(t)

(bottom frame, solid curve), and the complex phase ψ(t) (top frame) for an example
of an exactly critical quench. Clearly, at late times, the complex phase rotates in
a way that is periodic on the logarithmic time axis, a typical signal of discrete
scale invariance [12]. The other curves show power law behaviours ϕ ∝ 1/

√
t and

|At − ρc| ∝ 1/t at late times.
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Specifically, the late-time behaviour after exactly critical quenches was
well described by the model

ϕ(t) = A(t+ δt)α , (2)
ψ̇(t)− (At(t)− ρc) = B(t+ δt)γ , (3)

with fitted values

A ≈ 4.07 , α ≈ −0.50 ,

B ≈ 0.93 , γ ≈ −1.00 , (4)

and δt depending on the initial state before the quench. See Fig. 2 for
illustration of representative findings.

3. Boundary model

As we further discussed in [9], when switching within the AdS/CFT
correspondence to a boundary perspective, these observations can be ex-
plained very well by postulating a non-linear (complex) Ginzburg–Landau
equation [15, 16] (see also [17, 18]) of the form[

∂t − iC1

(
At(t)− ρ+ C5|Ψ(t)|2

)]
Ψ(t)

≡ −(C2 + iC3)
[
|Ψ(t)|2 − C4(ρ− ρc)

]
Ψ(t) , (5)

where again Ψ = ϕ eiψ, ρ, ρc, ψ,At, Ci ∈ R, ϕ > 0. The parameter C1 is the
charge of the complex field which in our case is +1. As explained in detail
in [9], the other parameters Ci can be fixed by comparing the predictions
of (5) to the static solutions of the holographic superconductor and to the
exponential falloff (at very late times) after near-critical quenches. The
result is

C2 ≈ 0.03018 , C3 ≈ 0.09308 ,

C4 ≈ 4.09192 , C5 ≈ 0.14967 . (6)

Once these parameters are fixed, equation (5) then allows us to make predic-
tions for the behaviour of the holographic superconductor either for exactly
critical quenches, or for the intermediate time behaviour of near-critical
quenches. In fact, we can even provide simple analytic solutions for (5): In
the exactly critical case (defined by ρ = ρc), we obtain

ϕ(t) =
1√

2C2t+
1

ϕ(0)2

≈ 4.07

t1/2
+ . . . , (7)
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and2

ψ̇ − C1(At − ρc) =
C1C5 + C3

2C2t+
1

ϕ(0)2

≈ 0.94

t
+ . . . (8)

Clearly, this is in excellent agreement with our observations (2), (3), and (4).
The solution (7) agrees with the scaling solution derived in [19] for an “initial-
slip exponent” θ = 0, which is indeed expected from the similar model [20].

Fig. 3. Numerical (solid blue) and analytical (dashed orange, equation (9)) re-
sults for ϕ(t) after a near-critical quench, from ρinitial =4.06626 to ρfinal =4.06373.
Clearly, numerical and analytical curves agree very well. The dash-dotted red line
shows the critical solution (7), which is expected to be a good approximation until
the timescale tho which is signified by the (blue) dot.

Lastly, it is worth taking another look at the solutions of (5) for near-
critical quenches, where ρ is extremely close but not identical to ρc. The
solution then reads

ϕ(t) =

√√√√ C4(ρ− ρc)

1−
(
1− C4(ρ−ρc)

ϕ(0)2

)
e−2C2C4t(ρ−ρc)

(9)

and another cumbersome expression for ψ̇ − C1At is given in [9]. Interest-
ingly, for ρ − ρc → 0, this function describes a set of curves that exhibit a

2 Equation (5) only allows to solve the combination ψ̇ − C1At as a consequence of
gauge invariance. Obtaining unique results for both ψ(t) and At(t) would require
the imposition of an additional gauge choice.
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power-law falloff at intermediate times, which transitions to an exponential
QNM-like falloff only at a timescale

tho ∼ 1

|ρ− ρc|
. (10)

In this sense, the power law falloff and discrete scale invariance that are
characteristic for the exactly critical quenches are predicted to be observed
also at intermediate times in the merely near -critical quenches. This is again
clearly confirmed by our numerical simulations of the bulk dynamics. See
Fig. 3 for illustration.
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