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We investigate stationary accretion of the collisionless Vlasov gas onto
the Kerr black hole, occurring in the equatorial plane. At infinity, the gas
obeys the Maxwell–Jüttner distribution, restricted to the equatorial plane.
In the vicinity of the black hole, the motion of the gas is governed by
the spacetime geometry. We compute accretion rates of the rest-mass, the
energy, and the angular momentum, as well as the particle number surface
density, focusing on the dependence of these quantities on the asymptotic
temperature of the gas and the black hole spin. The accretion slows down
the rotation of the black hole. We present preliminary results for the Vlasov
gas accretion onto the Kerr black hole moving with a velocity parallel to
the equatorial plane.
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1. Introduction and motivation

There is growing evidence for dark matter accretion in the context of
supermassive black holes (SMBH) and, in particular, M87* [2, 3]. Recent
observations of galaxies at 10<z < 14 [4] might require revisiting the basic
physics of structure formation in the early Universe (z > 20), including a
possible creation of SMBH’s just (∼ 100 mln years) after the Big Bang.
The latter is probably impossible without the runaway dark matter accre-
tion and/or the existence of primordial black holes [5]. It has also been
suggested that long-term observations of stars trajectories in the vicinity of
black holes can provide means of probing the dark matter density profile
and probably allow to distinguish between different models [6]. In binary
black-hole systems such as OJ287 [7], the drag/lift effects due to the dark
matter accretion could be also present and perhaps affect the motion of the
minor black hole component. For rotating and moving Kerr black holes, the
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dark matter wind accretion might lead to a complicated behaviour involving
a drag/lift or a slowdown and the precession of the black hole spin. Results
presented in this article for the Vlasov gas accretion onto a Kerr black hole
occurring at the equatorial plane provide mandatory intermediate steps to-
wards understanding the full picture, in which the matter is not restricted
to the equatorial plane.

The equatorial accretion of the Vlasov gas onto a Kerr black hole has
been analysed in [8]. In this paper, we report on preliminary results for an
analogous model, in which the (rotating) black hole moves in a direction
parallel to the equatorial plane. The gas is assumed to be collisionless, and
it is still confined to the equatorial plane of the Kerr spacetime. We obtain
stationary solutions for the Vlasov equation, assuming asymptotic conditions
corresponding to a two-dimensional Maxwell–Jüttner distribution boosted
with a constant velocity along a direction parallel to the equatorial plane.

2. Notation, coordinates, and conventions

We adopt the coordinate system and the notation used in [8] for the Kerr
black hole at rest. In the case of a moving black hole or, equivalently, the
Vlasov gas boosted with a constant speed at infinity, our notation follows [9]
to some degree. Details of an efficient implementation of the elliptic func-
tion X, required for the computation of phase-space integrals, can be found
in [10]. A part of our calculations has been done using ccgrg ver-2.01 [11].

We work in the coordinates t, r > rhor,−π < φ ≤ π, where rhor corre-
sponds to the location of the outer Kerr horizon. The Kerr metric induced
at the equatorial plane reads

γµν =

 −1 + 2M
r 0 −2aM

r

0 r2

a2−2Mr+r2
0

−2aM
r 0 2a2M

r + a2 + r2

 .

The above metric is flat for M = 0; for M = 0 and a = 0, it is explic-
itly flat in polar coordinates, while for a ̸= 0, it is explicitly flat in oblate
spheroidal coordinates. We have |γµν | = |γµν |−1 = −r2, γµνγµν = 3.

3. Solution of the Vlasov equation via canonical transformation

The main goal of this section is to find a general solution of the Vlasov
equation

∂f

∂xµ
∂H

∂pµ
− ∂f

∂pν

∂H

∂xν
= 0 , (1)

where f(xµ, pν) = f(t, r, φ, pt, pr, pφ) denotes the phase-space distribution
function. The Hamiltonian corresponding to the time-like geodesic motion
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reads

H(t, r, φ, pt, pr, pφ) =
1

2
γµνpµpν = −1

2
m2 , (2)

where m denotes the rest-mass of a gas particle.
The main idea used in [12, 13] is to introduce a set of new action-angle

type variables (Pµ, Q
ν), defined by a canonical transformation with the gen-

erating function in the form of an action

W = −Et+ lzφ+ ϵrWr . (3)

Here, E = −pt and lz = pφ are constant, and ϵr is a sign corresponding to
the direction of the radial motion. The action W is an integral solution of
the Hamilton–Jacobi equation

γµν
∂W

∂xµ
∂W

∂xν
= −m2 . (4)

In terms of old canonical coordinates t, r, φ, and new canonical momenta
P0, P1, P2 defined by

P0 = m, P1 = E , P2 = lz ,

the generating function W can be written as

W = −P1t+ P2φ+ ϵrWr(r, P0, P1, P2) .

An explicit expression for Wr can be obtained, but it is not required. Instead,
it is sufficient to search for a solution of the following set of equations:

P0 = m(r, pt, pr, pφ) ≡
√
−γµνpµpν =

√
−2H , (5a)

P1 = −pt , (5b)
P2 = pφ , (5c)
Q0 = ∂Wr/∂P0 , (5d)
Q1 = −t+ ∂Wr/∂P1 , (5e)
Q2 = φ− ∂Wr/∂P2 . (5f)

In terms of new variables (Pµ, Q
ν), Eq. (1) can be written as−P0∂f/∂Q

0=0.
Any distribution function of the form f = f(P0, P1, P2, Q

1, Q2) satisfies
the Vlasov equation. We select the solution by specifying boundary condi-
tions corresponding to a boosted Maxwell–Jüttner distribution at infinity.
In principle, equations (5) can be solved, yielding the canonical transforma-
tion (t, r, φ, pt, pr, pφ)←→ (Q0, Q1, Q2, P0, P1, P2). This can be done, using
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elementary functions, only in the simplest case with M = 0, a = 0. In prac-
tice, we follow a different route. Let us consider Q2, which will appear in the
boosted Maxwell–Jüttner distribution. In integral (5f), we change variables
according to

r = Mξ , a = αM , P1 = εP0 , P2 = ϵσMP0(λ+ ϵσαε) ,

where ϵσ = ±1. This transforms equation (5f) into a dimensionless form

Q2 = φ− ϵrϵσX(ξ, ε, λ, αϵσ) , (6)

where the elliptic function X is a generalization of the one used in the
Schwarzschild case, cf. [14], Eq. (12). In explicit terms, X is defined by the
integral

X(ξ, ε, λ, α) =

∞∫
ξ

(
λ+ αε

1− 2
ξ

)
dξ(

α2

1− 2
ξ

+ ξ2
)√

ε2 −
(
1− 2

ξ

)(
1 + λ2

ξ2

)
− α2+2ελα

ξ2

. (7)

The canonical variable Q2(t, r, φ, pt, pr, pφ) now reads

Q2 = φ− ϵrX

(
r

M
,

−pt
m(r, pt, pr, pφ)

, ϵσ
pφ + apt

Mm(r, pt, pr, pφ)
,
a

M
ϵσ

)
. (8)

One can verify numerically that the above form satisfies the Vlasov equa-
tion (1). The above form allows us to base our calculation on well-understood
properties and a numerical implementation of the function X [10, 14].

4. Boosted Maxwell–Jüttner distribution in canonical variables

The Maxwell–Jüttner distribution of a simple gas in the Minkowski
spacetime, boosted along the x direction, can be written as

f = Aδ(m−m0) exp

[
β

m0

√
1− v2

(pt − vpx)

]
. (9)

Here, v is the gas velocity, m0 denotes the particle mass, and β = m0/(kBT ),
where T is the temperature, and kB denotes the Boltzmann constant. In
what follows, we set A = 1. The crucial term is the Cartesian x momentum
component, which at the equatorial plane can be expressed in coordinates
(r, φ) as

px = pr cosφ−
pφ
r

sinφ = −
√
p2r +

(pφ
r

)2
sin

[
φ− arctan

(pφ
r
, pr

)]
.
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In the second form of the above expression, we took advantage of the 2-ar-
gument arctan function to defer the discussion of the signs of pr and pφ in
four quadrants of the plane (pφ/r, pr). Using canonical variables (still for
M = a = 0), we get

px =
√
P 2
1 − P 2

0 sinQ2 , Q2 = φ− arctan
(pφ
r
, pr

)
.

The above formulas provide asymptotic conditions corresponding to the
gas moving uniformly at infinity (see, e.g., [5]). Expression (9), together with
the above substitutions, provides a solution for the general Vlasov equation
in the equatorial plane of the Kerr spacetime, however, P0, P1, Q

2 have to
be replaced by appropriate solutions to (5). This gives the same form

px =
√

P 2
1 − P 2

0 sinQ2 , (10)

but now Q2 is given by equation (8). While X → arctan for M = a = 0,
there is no two-argument version of the elliptic X function, and the above

Fig. 1. Flow directions and (surface) particle density n =
√
−JµJµ computed

according to equations (11). The asymptotic value of n is denoted as n∞, and
computed using Eq. (50) in [8]. Note a highly asymmetric flow for the large veloc-
ities and Kerr parameters. See also full size video.

https://www.actaphys.uj.edu.pl/store/appdx/s16-06-13.mp4
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expression is guaranteed to work only in the first quadrant of the (r, φ) plane,
i.e., for 0 < φ < π/2. For the other three quadrants, appropriate phase-
jumps must be taken into account. For v = 0, all quadrants are identical,
while in the moving (v ̸= 0) and non-rotating (a = 0) cases, the flow has a
mirror symmetry. A generic flow around a rotating and moving black hole
is different in all quadrants (cf. Fig. 1).

5. Phase-space integrals

The main goal of this section is to compute the components of the particle
current surface density Jµ. An essential part of this calculation consists in
evaluating integrals of the form

∫∫∫ pt
pr
pφ

 e
β

m0

√
1−v2

(pt−vpx)√
−|γµν | δ(m(r, pµ)−m0)dpt dpr dpφ ,

where px is given by (10). To remove the Dirac delta term and simplify the
above expression, we change variables as follows: (pt, pr, pφ)→ (m̄, ε, λ),

m̄ = m(r, pµ) , ε = − pt
m(r, pµ)

, λ =
ϵσ(pφ + apt)

Mm(r, pµ)
,

where the functions m and H are given by equations (5a) and (2), respec-
tively. The Jacobian of this transformation reads

m̄2M/
√
ε2 − Uλ − α(α+ 2ελϵσ)/ξ2 ,

where Uλ = (1−2/ξ)(1+λ2/ξ2) is the effective radial potential for Schwarz-
schild timelike geodesics [10].

After the change of variables and the integration over m̄, we get

m3
0M

ξ

∫∫  −ε
−ϵσ ξ2

∆

√
ε2 − Uλ − α(α+2ελϵσ)

ξ2

ϵσλM + εαM


×e

− β√
1−v2

[ε+ϵσv
√
ε2−1 sin (φ−ϵrϵσX)]√

ε2 − Uλ − α(α+2ελϵσ)
ξ2

dε dλ ,

where ∆ = M2(ξ2−2ξ+α2). The above formula is valid in the first quadrant
of the pr–pφ phase space. In analogy to the Minkowski and Schwarzschild
cases, branch cut jumps can be smoothed out by inserting ±π/2 terms.
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Integration limits and the splitting into absorbed/scattered currents are the
same as those used in [8], see our equations (68)–(69). We also denote, in
compliance with [8], R̃ = ε2−Uλ−α(α+ 2ελϵσ)/ξ

2. Finally, the components
of the particle current density can be written as

J
(abs)
t = −Mm3

0

ξ

∑
ϵσ=±1

∑
ϵr=−1

∞∫
1

 λc∫
0

ε√
R̃

S dλ

dε , (11a)

J (abs)
r =

Mm3
0ξ

ξ(ξ − 2) + α2

∑
ϵσ=±1

∑
ϵr=−1

∞∫
1

 λc∫
0

ϵr S dλ

 dε , (11b)

J (abs)
φ =

Mm3
0

ξ

∑
ϵσ=±1

∑
ϵr=−1

∞∫
1

 λc∫
0

ϵσ
λ+ ϵσαε√

R̃
S dλ

 dε , (11c)

J
(scatt)
t = −Mm3

0

ξ

∑
ϵσ=±1

∑
ϵr=±1

∞∫
εmin

 λmax∫
λc

ε√
R̃

S dλ

 dε , (11d)

J (scatt)
r =

Mm3
0ξ

ξ(ξ − 2) + α2

∑
ϵσ=±1

∑
ϵr=±1

∞∫
εmin

 λmax∫
λc

ϵr S dλ

dε , (11e)

J (scatt)
φ =

Mm3
0

ξ

∑
ϵσ=±1

∑
ϵr=±1

∞∫
εmin

 λmax∫
λc

ϵσ
λ+ ϵσαε√

R̃
S dλ

dε , (11f)

where, to shorten the notation, we have denoted

S = e
− β√

1−v2
{ε+ϵσv

√
ε2−1 sin [φ−ϵrϵσ(−X+π/2)]}

.

Note that X = X(ξ, ε, λ, αϵσ) depends on ϵσ via the sign of its last
argument, although definition (7) is chosen in such a way that X(ξ, ε, λ, 0)
reduces to the form used previously for the moving Schwarzschild black hole
[5]. Structurally, formulas for J

(abs)
µ and J

(scatt)
µ are similar, except for the

sum over ϵr and integration limits.
The stress-energy tensor components Tµν can be computed by noticing

that integrands of Jµ and Tµν are similar, cf., e.g., [15]

∫∫∫ p2t ptpr ptpφ
· p2r prpφ
· · p2φ

 e
β

m0

√
1−v2

(pt−vpx)√
−|γµν |δ(m(r, pµ)−m0)dpt dpr dpφ .
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Accretion rates can be derived following Sec. VI. in [8]. For example, the
rest-mass accretion rate is

Ṁ = −2πMm0

∑
ϵσ=±1

∞∫
0

λc(ε, α, εσ) e
− βε√

1−v2 I0

(
βγv

√
ε2 − 1

)
dε ,

where λc can be found in [8], equations (53), and I0 is the modified Bessel
function, see [16], equation (10.25.2).

6. Conclusions

We have investigated a model of the equatorial accretion of dark matter
onto a Kerr black hole. Our main findings [8] can be summarized as follows:
the relation between the mass accretion rate and the black hole rotation
parameter exhibits a “circular” shape due to the shrinkage and expansion of
circular photon orbits. The angular momentum accretion rate has a nearly
linear dependence on the black hole rotation parameter, except for the values
of α = ±1. The accretion process slows down the black hole rotation, with
a timescale of τ = c/(24Gρ∞) [1]. There are surprising differences between
the accretion of a gas confined to the equatorial plane and models in which
the motion of the gas is not restricted to the equatorial plane. They are
due to the effective dimensionality of these two cases. This fact calls for a
construction of a full 3+1 dimensional model of the Vlasov gas accretion in
the Kerr spacetime.
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