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It is well-known that a collapsing single-layer sphere with spatially con-
stant mass density leads to the Schwarzschild black hole, but the outcome
is less clear when one considers the simplest multi-layer generalization of
this: That of a homogeneous core surrounded by a homogeneous envelope
of lower mass density, where both are joined at their common interface
using the Darmois matching conditions. In this exploration, we set up the
appropriate static initial conditions for the subsequent collapse of this two-
layer sphere, and find that it is necessary to approximate the relative mass
densities. We then go on to discuss how our setup could also be applied in
the corresponding non-spherical case, where the ultimate goal is to deter-
mine at an analytical level how multiple layers may lead to the formation
of something different to the Kerr black hole during a rotating collapse.
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1. Introduction

The final fate of gravitational collapse is one of the most pursued ques-
tions in General Relativity. The simplest configuration involving a sphere
of pressureless matter with constant mass density was discovered by Op-
penheimer and Snyder (hereafter denoted O–S) [1], where the end state is
a Schwarzschild black hole. Lemaître, Tolman, and Bondi (LTB) [2], and
many others have generalized this to investigate collapsing balls having spa-
tially varying mass density, demonstrating that naked singularities can arise
when the mass variation is significant. Price, Cunningham, and Moncrief [3]
(denoted PCM) extended the homogeneous O–S collapse to include slow
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rotation; they showed that both Kerr and non-Kerr end states can arise, de-
pending on the initial conditions. Numerical work on gravitational collapse
under a variety of conditions is summarized in Joshi and Malafarina [4].

Rather than a single layer of constant mass density, in reality, astrophys-
ical bodies are more likely to be composed of multiple layers with a higher
mass density in the inner layers, and it is natural to ask whether (or not)
the simplest multi-layer body having different spatially-constant mass den-
sities in each layer will also collapse to a Schwarzschild black hole under all
conditions, and then later explore the non-spherical PCM analog.

However, this multi-layer structure having a step-like distribution can
be regarded as behaving in a somewhat analogous manner to a single-layer
spheroid with a continuously varying mass density, where the matching con-
ditions for the gravitational field at the mutual interface for our step-like
distribution are expected to play a very important role.

Before we can make progress with departures from spherical symmetry
however, we must first fully establish the spherical limit of such a collapsing
configuration, which in this case, is likely to require some variant of the
O–S evolution to be applied to each layer. Not only that, but we must also
construct appropriate static initial conditions for this spherical limit.

There is already a wide variety of literature on spherical, static solutions
(e.g. [5]), and further there has also been some work on exact solutions
for static core–envelope structures, starting with Durgapal [6]. If we were
only interested in the spherical case, then these could have been used as
initial data for an LTB-like evolution. But we ultimately want to go beyond
spherical symmetry, and unlike the spatially-constant mass density case,
these other solutions and their respective LTB evolution do not easily extend
to the non-spherical case.

More importantly, the single-layer O–S collapse requires a static sphere
with a constant mass density at the start of the collapse [7]; this is the well-
known Schwarzschild interior [8]. Therefore, an analogous requirement in
our proposed spherical multi-layer collapse would be that we also start with
a static body consisting of multiple layers, each with their own constant
mass density.

With all this in mind, for the remainder of this paper, we shall focus
our attention on the simplest possible generalization of the static single-
layer sphere to a different sphere consisting of a constant mass density core,
surrounded by an outer layer of (lower) constant mass density than the core.
As we will later see, this is not the simple combination of two-single-layer
metrics, because the outer layer will be shown to possess a highly non-
trivial additional contribution to the field in order to satisfy the interface
and boundary conditions. These are stipulated by the Darmois matching
conditions of the induced metric and extrinsic curvature, which in the static
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case reduce to the matching of the pressure and the two metric components.
In order to obtain our solution, we learn that it is necessary to make a new
type of approximation, which is also likely to apply to the collapsing case in
a future investigation.

2. Two-layer static interior

The general metric for a static sphere having isotropic pressure is given by

ds2 = −eνdt2 + eλdr2 + r2dΩ
2
, (1)

where Ω is the solid angle, and the independent variable r is defined by
being orthogonal to the Killing hypersurfaces. Following a similar solution
procedure to Stephani [9], the three field equations essentially amount to
(where the dash denotes r differentiation, k is the gravitational constant,
and µ is the mass density of the fluid): (i) Hydrostatic equilibrium

(p+ µ)′ = −1

2
ν ′(p+ µ) , (2)

p+ µ = B e−
ν
2 (3)

and (ii) Conditions on the dr and dt coefficients respectively

kr2µ = −
(
e−λr

)′
+ 1 , (4)

e−λ

r

(
λ′ + µ′) = kB e−

ν
2 , (5)

where B is an integration constant of (4), and (3) is incorporated into the
pressure term in the original field equation which led to (5). We want to ap-
ply this form of the field equations to our two-layer setup, which consists
of an outer layer having (coordinate) radius (a) and mass density µ, and
an inner core with radius (b) having mass density ρ. So far, no assumption
is made about the relative magnitudes of the radii, or of the mass densi-
ties. Integrating (4) for the outer layer gives (where g is another integration
constant)

e−λ = 1−Ar2 +
g

r
, (6)

A =
1

3
kµ . (7)

One could argue that as the integration is over a layer of finite size, it
must be evaluated as a definite integral with the limits (a) and (b) explic-
itly stated. Or, alternatively, one could initially evaluate it as an indefinite
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integral, and apply the boundary conditions which subsequently determine
the integration constant g. Mathematically speaking, both methods are
equally correct, but here we choose the latter approach in order to have as
many integration parameters available as possible for when we eventually
apply the mutual interface and external boundary conditions; the radial
coordinate values corresponding to (a) and (b) would end up becoming a
by-product of the matching conditions.

To deal with the field equation (5), use (6) and let e−
ν
2 = σ. This gives

us the following ODE, where transforming the derivative results in an extra
factor of σ on the r.h.s.:

2
(
1−Ar2 +

g

r

)
σ

′ −
(
2Ar +

g

r2

)
σ = kBrσ2 . (8)

Equation (8) is a Bernoulli-type equation where the r.h.s. is non-linear
in σ; it can be converted to the following linear first-order ODE by the
substitution σ = z−1:

2
(
1−Ar2 +

g

r

) dz

dr
+
(
2Ar +

g

r2

)
z = rkB . (9)

As things currently stand, this equation cannot be solved in terms of
closed functions if g ̸= 0 [10]; g = 0 is the well-known Schwarzschild interior
for the single-layer case. To get around the issue where g ̸= 0, we now make
two different approximations.

3. Small variation in the mass densities

The most obvious assumption to make is that the total gravitating mass
of the core is only slightly larger than that of the outer layer; this can be
achieved if the mass density of the core is slightly larger than the mass
density of the outer layer. Correspondingly, this would require that the field
in the outer layer is a small increment on top of what the single-layer case
already provides. Therefore, letting ε = g

A and B → B0 + εB1, Eq. (9) can
be written as

2

(
1−Ar2 +

Aε

r

)
dz

dr
+

(
2Ar +

Aε

r2

)
z = rk(B0 + εB1) . (10)

Equation (10) can now be solved using the usual method of integrat-
ing factors, where we write the resulting integration constant as C0 + εC1.
Taylor-expanding wherever ε appears, and replacing for ε back in terms of g
after the expansions, solving (10) gives

e
ν
2 = z = z0 + z1 , (11)
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where z0 corresponds to the well-known single-layer case, and z1 is given by

z1 =
kgb

2A
+

kgB

2

(
1

2r
− r

)
− gD

2r
√
1−Ar2

+ gE
√
Ar2 − 1 (12)

with

eλ(1) = −g

r
, (13)

p(1) = −µ + bz1 , (14)

where k, A, B, and D are zero-order constants. E, b, are first order.
The corresponding solutions of (2)–(5) for the dependent variables of the

inner core of mass density ρ are of a similar form to the single-layer case.
However, we remember that the slightly higher mass density of the inner
core compared to the outer layer means that the relevant constants can be
written as a perturbation of the single-layer case as follows:

eλ(c) = 1− (A+ α)r2 , (15)

e
ν
2

(c) =
k(B + β)

2(A+ α)
+ (D + δ)

√
1− (A+ α)r2 , (16)

p(c) = −3(A+ α)

k
+ (B + β) e

ν
2 (c) , (17)

where the suffix (c) denotes core, and we have assumed that ρ = µ + γ
and A = 1

3kµ. The next step is to Taylor-expand the perturbed quantities
around the single-layer case (it may help to use a book-keeping parameter
to keep track of the expansion orders). The resulting first-order expressions
are of the form

eλ(c)(1) = −αr2 , (18)

e
ν
2

(c)(1) = αfα(r,A,B,D) + βfβ(r,A,B,D) + δfδ(r,A,B,D) , (19)

p(c)(1) = αhα(r,A,B,D) + βhβ(r,A,B,D) + δhδ(r,A,B,D) , (20)

where the lengthy functions fα, fβ , fγ , and hα, hβ , hγ depend on the in-
dependent variable r, and the single-layer constants A, B, D. One can
immediately see that (18)–(20) are a linear system of algebraic equations in
β and γ, and similarly for the outer layer a set of linear equations in E and
B is formed from the O(g) limits of (3), (6), and (11).

For the vacuum exterior

eλ =
1

1− 2(M+∆M)
r

, (21)

e
ν
2 =

√
1− 2(M +∆M)

r
, (22)
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where M is the asymptotically measured mass of the single-layer case (i.e.
the whole composite structure having a single mass density µ throughout),
and ∆M is the asymptotically measured mass corresponding to the inner
core that is over and above what would be provided by the single-layer case
(i.e. ∆M originates from the perturbed portion of the inner core with mass
density ρ–µ); both (21) and (22) must be Taylor-expanded to zero and first
order in ∆M . The Darmois matching now takes place in two stages as
follows:

(i) Zero-order: This is trivial, and is just the well-known single-layer case
with mass density µ.

(ii) First-order: Once the above has been satisfied, the expansion of (6) to
first order in g is matched to a first order expansion of (21) in ∆M , in
order to obtain ∆M in terms of g. Similarly to first order in g, (11) is
matched to (22), and (3) is matched to its vacuum value (i.e. zero);
this allows us to simultaneously solve for E and b. Then to solve for the
constants β and δ in an analogous manner, the parts of (3) and (11)
that are of first order in g are respectively matched to (20) and (19).
Matching the first-order part of (6) to (18) determines g in terms of α,
in other words in terms of (ρ–µ), the perturbed mass density of the
core.

One possible interpretation of the result obtained from this section is that
the zero-order case corresponds to the self-gravity of the entire composite
body with a single mass density µ, whereas the first-order result corresponds
to a field in the outer layer being bathed in incompressible fluid, but itself
not contributing any additional gravitating mass from the outer layer. This
field would originate from the perturbed mass density of the core.

4. Large variation in the mass densities

Returning to (9), if we instead make the assumption that terms involving
the quantity A are much smaller than terms involving g, then this implies
that the equivalent single-layer total mass of the outer layer from r = 0 to r
is much smaller than the total mass of the core. This can be achieved if
the mass density of the outer layer is small compared to that of the core; it
must be understood that unlike in the previous section, this approximation
is not a perturbation of the single-layer case, and must be solved from first
principles. Letting ε = A

g and B → B0 + εB1, Eq. (9) can be written as

2
(
1− εgr2 +

g

r

) dz

dr
+
(
2εgr +

g

r2

)
z = rk(B0 + εB1) . (23)

Equation (23) can now be solved using the usual method of integrat-
ing factors, where we write the resulting integration constant as C0 + εC1.
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Taylor-expanding wherever ε appears, and replacing for ε back in terms of
A
g after the expansions, solving (23) gives the quite lengthy expression

e
ν
2 = z = z1 + z2 + z3 + z4 , (24)

where

z1 =
(
2r2 − 5gr − 15g2

) kB0

8

(
1− Ar2

2
(
1 + g

r

))

−
(
AkB1

256g

) (
480g3 + 640g2r + 96gr2 − 64r3

)
(r + g)

z2 =

√(
1 +

g

r

)(
16C0 −

15

2
g2kB0 lnX

)(
1− Ar2

32
(
1 + g

r

)) ,

z3 = − AkB0

256(r+g)

(
3465g5 + 4620g4 + 693g2r2 − 198g2r3 + 88gr4 − 48r5

)
,

z4 =
A

g

√
1 +

g

r

(
C1 −

3465

1024
g2k

(
g3B0 +

32

231
B1

)
lnX

)
,

X =
2
√

r(r + g)− 2r − g

2
√
r(r + g) + 2r + g

,

and A is given by (7). As before, the corresponding solutions of (2)–(5) for
the dependent variables of the inner core of mass density ρ are of a similar
form to the single-layer case. However, as the mass density of the inner
core is much greater than in the outer layer, this means that the relevant
constants for the core must be written in terms of their counterparts in the
outer layer as follows:

eλ(c) = 1− (α+A)r2 , (25)

e
ν
2

(c) =
k(β +B)

2(α+A)
+ (δ +D)

√
1− (α+A)r2 , (26)

p(c) = −3(α+A)

k
+ (β +B)e

ν
2 (c) , (27)

where α = 1
3kγ and, just like in the previous section, we have assumed that

ρ = γ + µ, but this time, µ is the small perturbation to the mass density.
In other words, the effective mass density corresponding to this zero-order
case is γ = ρ − µ, and the zero-order quantities α, β, and δ are associated
with γ (and not ρ); the first-order constants A, D, and B are now associated
with µ. The next step is to Taylor-expand the perturbed quantities around
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the zero-order case (it may help to use a book-keeping parameter to keep
track of the expansion orders). The resulting zero-order expressions are

eλ(c)(0) = 1− αr2 , (28)

e
ν
2

(c)(0) =
kβ

2α
+ δ
√

1− αr2 , (29)

p(c)(0) = −3α

k
+ β e−

ν
2 (c) , (30)

and the corresponding first order expressions are of the form

eλ(c)(1) = −Ar2 , (31)

e
ν
2

(c)(1) = AfA(r, α, β, δ) +BfB(r, α, β, δ) +DfD(r, α, β, δ) , (32)

p(c)(1) = AhA(r, α, β, δ) +BhB(r, α, β, δ) +DhD(r, α, β, δ) , (33)

where the lengthy functions fA, fB, fD and hA, hB, hD depend on the
independent variable r, and the zero-order constants α, β, δ. One can
immediately see that (28)–(30) is a system of equations in β and δ, and
(31)–(33) is a linear system in B and D.

For the outer layer, a set of linear equations in B0 and C0 is formed from
the A = 0 limits of (24), and a first-order set in B1 and C1 is formed from
the O(A) limit of (24).

As in the previous section, the vacuum exterior is given by

eλ =
1

1− 2(M+∆M)
r

, (34)

e
ν
2 =

√
1− 2(M +∆M)

r
. (35)

However, now M is the asymptotically measured mass of the inner core,
and ∆M is the asymptotically measured mass corresponding to the (per-
turbed) self-gravity in the outer layer; this interpretation of the gravitating
mass is somewhat different to the case of small mass density variation. Both
(34) and (35) must be Taylor-expanded to zero and first order in ∆M , re-
spectively, and respecting both orders of the approximation, the Darmois
matching must take place in two distinct stages as follows:

(i) Zero-order: At the interface, Eq. (28) and the A = 0 limit of (6) are
matched to express g in terms of α. Then β and δ can be found from
equating (29) to the A = 0 limit of (24), along with the matching
of pressure at the interface using both (30) and the zero-order limit
of (3); re-arranging this latter equation makes it linear in β and δ. At
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the outer boundary, the A = 0 limit of (6) is matched to the ∆M = 0
limit of (34) in order to express M in terms of g, while B0 and C0 are
obtained from matching the A = 0 limit of (24) with the ∆M = 0
limit of (35), and also from matching the A = 0 limit of (3) to the
vacuum.

(ii) First-order: Once the above has been satisfied, at the outer boundary,
the perturbed A ̸= 0 part of (6) is matched to the first-order expansion
of (34) in ∆M , to obtain ∆M in terms of A. Then to solve for the
constants B1 and C1, the parts of (24) that are of first order in A are
matched to the parts of (35) that are of first order in ∆M , along with
matching the perturbed A ̸= 0 part of (3) to its vacuum value (in this
case zero). At the interface (31) and the perturbed A ̸= 0 part of (6)
is trivially matched but to solve for B and D in terms of both B1 and
C1, (32) is matched to the A ̸= 0 part of (24), and (33) is matched to
the perturbed A ̸= 0 part of (3).

In a somewhat analogous manner to the case of small mass density vari-
ation, one could regard (24) as consisting of an ‘exact’ part with A = 0,
supplemented by a perturbation with A ̸= 0. The exact part corresponds to
a field that is effectively bathed in the incompressible fluid of the outer layer,
while not contributing any additional gravitating mass from the outer layer,
and originates from the inner core. On the other hand, the perturbation
corresponds to the self-gravity contributed by the outer layer.

5. Discussion

Now that we have obtained our static initial configuration, we ask our-
selves how the collapse may proceed. Naively, one could try to apply the
O–S model separately to the two layers, and then apply the Darmois condi-
tions at the mutual interface (e.g. [11]). But it can easily be shown that this
results in requiring the scale factors of both layers to be equal, something
that is not compatible with the initial conditions of differing mass densities
in both layers ([7] — see (11.9.23) and (11.9.25)).

Indeed, on physical grounds, one should expect at least one of the layers
to have a scale factor that is not spatially uniform. For if both scale factors
were different yet spatially independent, the outer layer would collapse at
a slower rate than if both layers have the same mass density. If the outer
layer fails to keep up with the inner layer, then a gap would open up at the
mutual interface. In order to preserve continuity at the interface, the scale
factor of the outer layer must now have a spatial dependence, in addition to
its usual time dependence.
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Therefore, the O–S model in its original form cannot be used for the
outer layer, and it will have to be solved from first principles. But in the
case of the small mass density variation, it may be possible to treat the outer
layer as a perturbation of the single-layer O–S collapse, in an analogous
manner to what we have done for the static case. For the large mass density
variation, while the core can be modelled using the O–S description, the
collapsing outer layer really would have to be solved from scratch, also using
a perturbation decomposition that is analogous to what we have done for
the corresponding static case.

Given the nature of our approximations that will be used in the spherical
collapse of our two-layer dust ball, it is quite possible that at worst, the small
mass density variation case will only result in a correspondingly small delay
to the formation of the event horizon when compared against the single-
layer O–S model, but the large mass density variations may well lead to a
significant delay in horizon formation, or even worse a naked singularity.

One can then go on to ask what the effects of rotation may add. The
PCM framework for non-spherical collapsing (single-layer) dust has the prop-
erty that depending on the initial stationary rotation rate, the collapse can
‘spin-up’ the body such that the extreme Kerr limit is eventually reached,
and a naked singularity results. It is not unreasonable to expect that, when
the PCM framework is applied to the two-layer dust collapse, then this can
combine with the above-mentioned effects from the spherical case in a quite
non-trivial manner and significantly increase the risk that a naked singular-
ity arises, even for relatively small variations in the mass density, and this
must be investigated further.

6. Summary and next steps

In this study, we have introduced the concept of a two-layer homogeneous
isotropic body, and solved for the equilibrium spherical case where the inner
core is denser than the outer layer. In order to solve the equations, two
separate approximations had to be used — both small and large mass density
variations. As this solution constitutes initial data for spherical collapse,
similar approximations will also have to be used during the collapsing stage.

Once the results for spherical collapse have been obtained, departures
from spherical symmetry will be investigated using an analogous framework
to Price–Cunningham–Moncrief, again for small mass density variations and
separately for large mass density variations. This will provide an important
clue on the nature of the end states when a slowly rotating body with mul-
tiple layers experiences a full collapse; and this imprint will manifest itself
in the emitted gravitational waves.
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Of course, gravitational collapse is not the only application for the results
presented here; they can also be used as the basis to study other types of
perturbations of multi-layer stars. Indeed, a parallel project currently being
undertaken by the author is to investigate how gravitational waves emitted
by non-spherical interface oscillations end up affecting the rotation of the
star itself, and compare with the many previous investigations regarding the
corresponding behavior generated by other types of oscillations [12].
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