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We address the issue of black hole scalarization and its compatibility
with cosmic inflation and Big Bang cosmology from an effective field the-
ory (EFT) point of view. In practice, using a well-defined and healthy
toy model which (in part) has been broadly considered in the literature,
we consider how higher-order theories of gravity, up to cubic operators
in Riemann curvature, fit within this context. Interestingly enough, we
find that already at this minimal level, there is a non-trivial interplay be-
tween the Wilson coefficients which are otherwise completely independent,
constraining the parameter space where scalarization may actually occur.
Conclusively, we claim that the EFT does exhibit black hole scalarization,
remaining compatible with the inflationary paradigm, and admitting Gen-
eral Relativity as a cosmological attractor.
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1. Introduction

The “strong-field” regime of gravity, a mostly unexplored scenario, has
motivated new physical grounds where modifications of GR may take place.
In this context, there exist theories that exhibit a phenomenon dubbed
“spontaneous scalarization”. This process is indeed a distinctive manifes-
tation of gravitational interactions in the strong-field regime. The earliest of
such theories is the Damour and Esposito-Farèse (DEF) model [1, 2], where
scalarization occurs in neutron stars. Neutron stars are able to acquire a
non-trivial structure since the theory exhibits non-perturbative deviations
from GR only in the strong-field regime. However, spontaneous scalariza-
tion was later discovered to happen in other compact objects, such as black
holes, in the context of higher-order curvature theories [3, 4]. Another in-
teresting class of modified gravity theories based on higher-order curvature
invariants was constructed in [5] by using cubic contractions of the Riemann
tensor. This theory, dubbed “Einsteinian Cubic Gravity” (ECG), possesses
basic healthiness properties such as: (i) having a spectrum identical to that
of Einstein gravity, i.e., the metric perturbation on a maximally symmetric
background propagates only a transverse massless graviton; (ii) it is neither
topological nor trivial in four dimensions, and (iii) it is defined such that
it is independent of the number of dimensions. It is well-known that, in
general, such terms contribute with fourth-order derivatives of the metric
in the field equations. However, as it was shown in [6–8], the original form
of the theory is sufficient to admit spherically symmetric black hole solu-
tions with a second-order differential equation for the metric function and
a Friedmann–Lemaître–Robertson–Walker (FLRW) solution with second-
order field equations for the scale factor, leading to a “purely geometric” in-
flationary period [9]. The purpose of this work is two-fold. First, we want to
go a step further by addressing a scalar-tensor EFT that exhibits curvature-
induced scalarization, triggered by a set of suitable invariants made up of
the Riemann tensor, up to cubic order. Second, it is then of interest to in-
vestigate within this framework, how the new operators modify a previously
claimed catastrophic instability triggered by quantum fluctuations during
the inflationary stage in ESGB theory [10]. Third, we explore the Big Bang
Cosmology (BBC) of the model, and check that GR is indeed a late-time
cosmological attractor as experiments seem to demand [11].

The article is organized as follows: Section 2 introduces our model and
discusses how it achieves black hole scalarization. Section 3 studies whether
(or not) the model has GR as a cosmological attractor. Appendices found
in [12] are very brief overviews of the EFT approach, unstable mode existence
condition, and scalar perturbation theory in dS space, respectively.
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2. The model and black hole scalarization

We want to consider a theory that exhibits scalarization triggered by
higher-order curvature operators (other than the Gauss–Bonnet invariant,
which is the one usually considered in the literature) and also satisfies some
basic criteria, in order to have a well-posed and healthy gravitational system.
Consequently, we construct a model that possesses a spectrum identical to
that of Einstein gravity on a maximally symmetric background, and is neither
topological nor trivial in four spacetime dimensions.

The purely geometric theory was constructed in [5]. The generalized
version of that theory to higher dimensions and higher-order curvature op-
erators, known as “Generalized Quasi-Topological Gravity” (GQTG), was
studied in [8].

We start by recalling the cubic operator P in ECG theory, which reads

P = 12R ρ σ
µ ν R γ δ

ρ σ R µ ν
γ δ +R ρσ

µν R γδ
ρσ R µν

γδ

−12RµνρσR
µρRνσ + 8Rν

µR
µ
ρR

ρ
ν , (2.1)

while the operator C, found in GQTG [8], is given by the combination

C = RµνρσR
µνρ

δR
σδ− 1

4
RµνρσR

µνρσR−2RµνρσR
µρRνσ+

1

2
RµνR

µνR . (2.2)

The latter leads to null contributions in the equations of motion (EOM)
when evaluated on a static, spherically-symmetric ansatz, a feature that
has led some authors to arbitrarily neglect it altogether. However, it has
been proven that it is the exact combination P − 8C, the one that leads to
cosmologies with a well-posed initial value problem [9]. Therefore, this is
the combination of third-order curvature invariants that we shall consider
in this work.

In order to explore the phenomenon of scalarization, we must include a
scalar field without spoiling the conditions already mentioned. Therefore,
we will then consider the dynamical system determined by the action

S[gµν , φ]

=

∫
d4x

√
−g

[
M2

Pl

2
R+

α

M2
Pl

(P−8 C)− 1

2
gµν∇µφ∇νφ+ f

(
φ

MPl

)
I + · · ·

]
,

(2.3)

where f(φ/MPl) is a dimensionless “coupling function” between a canonically-
normalized scalar field φ and a set of curvature invariants given by

I = −βM2
PlR+ γ G − λ

M2
Pl

(P − 8C) , (2.4)
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where G stands for the well-known Gauss–Bonnet operator G ≡ RµναβR
µναβ

−4RµνR
µν+R2. Note that G, being a topological invariant, does not satisfy

property (ii) unless it is coupled to the scalar field, so this explains why it
is only considered within I. Moreover, α, β, γ, and λ are dimensionless
coupling constants, which are expected to be O(1) numbers from an EFT
point of view. Hereafter, for simplicity, we will refer to this theory as “Scalar-
Einsteinian Cubic Gravity” (SECG).

It should be emphasized that here we are assuming a φ → −φ (discrete)
symmetry as well as a φ → φ + constant (shift) symmetry of the scalar
Lagrangian, where the latter is only spoiled by gravitational interactions as
given by f(φ/MPl) I and higher-order operators represented by the ellipsis
in (2.3). Note that in this work we will not set the (reduced) Planck scale
MPl = 2.4 × 1018 GeV to unity as it is usually done in the literature since
we want to keep track of it to easily emphasize its role of being the ultimate
EFT cut-off of any gravitational system.

The EOM that stem from extremizing the action S[gµν , φ]=
∫
d4x

√
−gL

read

Rαβρ
µPνραβ + 2∇α∇βPαµνβ +

1

2
∇µφ∇νφ+

1

2
gµνL = 0 , (2.5)

2φ+ f,φ

(
φ

MPl

)
I = 0 , (2.6)

where ∇µ is the covariant derivative compatible with the spacetime metric
gµν , 2 ≡ ∇µ∇µ, f,φ ≡ df

dφ , and Pαβµν is defined as1Pαβµν ≡ ∂L
∂Rαβµν . The

EOM for the scalar field fluctuation δφ ≡ φ− φ0 is given by[
2+ f,φφ

(
φ0

MPl

)
I
]
δφ = 0 , (2.7)

where φ0 is the scalar field background, while the d’Alembertian operator
and I are computed in a fixed background. To prove that this theory admits
black hole scalarization, we start by noting that the Schwarzschild black hole
solution is also a trivial solution of the scalar-tensor cubic theory. This may
be achieved by a suitable coupling function satisfying both f,φ(0) = 0 and
f,φφ(0) > 0. The first condition ensures φ0 = 0 is a solution of the theory,
while the second condition has been understood to be necessary for the
emergence of a tachyonic instability in the scalar-Gauss–Bonnet model. It
is not difficult, though cumbersome, to strictly prove that the linearized
Einstein field equations are the same as in ECG, and therefore property (i)
is satisfied, provided the aforementioned conditions are fulfilled. Taking for

1 We use a normalized antisymmetrization convention A[µν] =
1
2
(Aµν −Aνµ).
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simplicity f(x) = 1
2x

2 + . . ., so that fx(0) = 0 and f,xx(0) = 1 > 0, we may
read off from (2.7) an effective mass squared m2

eff of the form

m2
eff = −f,φφ

(
φ0

MPl

)
I = βR− γ

M2
Pl

G +
λ

M4
Pl

(P − 8C) . (2.8)

It so happens that a black hole is a solution with R = 0 and G > 0, thus
we clearly see that γ must be positive (γ > 0) in order to have a tachyonic
instability

(
m2

eff < 0
)
, as the presence of the cubic term should and will

be taken to be immaterial because it is further suppressed by the Planck
scale for “natural” values of λ. Therefore, in this article we shall always
assume γ > 0, as we are interested in scalarized black hole solutions. Let
us now consider perturbations on a fixed Schwarzschild background. The
symmetry of such a spacetime allows for a decomposition of the perturbation
using the separation of variables, meaning δφ = u(r)

r e−iωt Ylm (θ, ϕ), where
Ylm (θ, ϕ) are the usual spherical harmonics. After substitution into EOM
(2.7), and using tortoise coordinates defined through dr∗ = dr

(
1− rg

r

)−1,
with rg ≡ M/4πM2

Pl standing for the Schwarzschild radius of the black hole
of mass M, we obtain a “Schrödinger-like” equation of the form

d2u

dr2∗
+ ω2u = Veff(r)u , (2.9)

where the effective potential Veff is defined as

Veff(r) =
(
1− rg

r

)( l(l + 1)

r2
+

rg
r3

− γ

M2
Pl

12 r2g
r6

+
λ

M4
Pl

84 r3g
r9

)
. (2.10)

There exists a sufficient condition for the existence of an unstable mode
which is given by

∞∫
−∞

dr∗ Veff(r∗) =

∞∫
rg

dr
Veff(r)(
1− rg

r

) < 0 . (2.11)

For this condition to hold, spherically symmetric perturbations (l = m = 0)
in a Schwarzschild background require

5 (rgMPl)
4 − 24 (rgMPl)

2 γ + 105λ < 0 . (2.12)

Interestingly enough, the Schwarzschild background is unstable for a specific
range of masses given by the above bounds. Moreover, we see that scalar-
ization may only occur when λ ≤ 48

175 γ
2, which is a non-trivial constraint
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between the couplings. This is still compatible with γ and λ both being
O(1) numbers. However, the sign of λ is clearly not fixed by this condition.
Note that when λ = 0, equation (2.12) implies M2 < 384π2

5 γM2
Pl. A back-

of-the-envelope calculation shows then that within our naive quadratic the-
ory (endowed with MPl as the only relevant scale), the maximum mass of
Schwarzschild black holes that may be scalarized is of the order of 10−37

solar masses. This fact certainly precludes any possibility of such a ver-
sion of SECG theory to be compared with observations. Furthermore, at
this state, the theory suffers from a hierarchy problem between the cou-
pling constants β and γ when perturbations on a FLRW background are
taken into account. To ease this problem, it is necessary to introduce a
new mass scale M given by the characteristic length scale L of the com-
pact object through M = L−1, which is usually taken to be L ∼ 10 km or
M = 1.98 × 10−20 GeV. These modifications additionally impose β > 0, so
finally the right theory is given by

S[gµν , φ]

=

∫
d4x

√
−g

[
M2

Pl

2
R+

α

M2
Pl

(P − 8 C)− 1

2
gµν∇µφ∇νφ+ f

( φ

M

)
I
]
,

(2.13)

with I = −βM2R + γ G − λ
M2 (P − 8C) . Remarkably, the introduction of

this mass scale M makes it possible for black holes of up to 180 solar masses
to become scalarized. Hereafter, we will refer to the SECG as the theory
with this new scale incorporated. This is given by (2.13). The reader may
refer to more details about this construction in Sec. 3 of reference [12].

In the next section, we will modify the theory in order to solve this
and some other “problems” that we will find along the way. Additionally,
it is crucial to stress that if we want GR solutions to be admissible in the
model we have been considering, we need to check that φ = φ(0) = 0 is the
asymptotic value that φ needs to take for unscalarized configurations. Let
us now consider how scalarization may occur within a cosmological setting.

3. General Relativity as a cosmic attractor

Scalar EOM (2.6) in an FLRW background is given by φ̈+3Hφ̇+m2
eff φ

= 0, where m2
eff = βR − γ

M2G + λ
M4 (P − 8C), and depends on the cosmo-

logical background. As usual, to study the evolution of the scale factor, we
concentrate on the “time–time” component of the modified Einstein equa-
tions M2

PlGtt = ρeff+ρa, where ρa denotes the energy densities of the several
BBC components of the cosmic fluid, while ρeff denotes an effective energy
density associated with the presence of the cubic operator and the scalar
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field, and it is given by

ρeff ≡ ρPC + ρφ , (3.1)

ρPC = −48α

M2
Pl

H6 , (3.2)

ρφ =
1

2
φ̇2 + 6

(
β − 4 γ χ− 24λχ2

)
Hφφ̇+ 3

(
β + 8λχ2

)
H2φ2 . (3.3)

We shall demand the usual cosmic evolution, meaning the Friedmann equa-
tion ρa ≈ 3M2

PlH
2, which directly implies that |ρPC | ≪ ρa, given the ex-

pectation (due to EFT reasoning) that α ≪ (MPl/H)4. In fact, notice that
even during inflation, which is the cosmic stage when H attains its highest
possible value, (MPl/H)4 ∼ 1021 ≫ α. In other words, the cubic energy den-
sity is indeed negligible when compared with the BBC cosmic fluid densities.
Moreover, as we do not want φ to play any role in late-time cosmology, we
shall assume, for the time being, that ρφ ≪ ρa, though, we acknowledge, it
will be mandatory to check if such an assumption is dynamically consistent.
It is straightforward to check that by using the Friedmann equation, the con-
tinuity equation takes the form ρ̇a + 3Hρa (1 + wa) = 0 where wa ≡ ρa/pa.
Let us now study the scalar field dynamics by expressing the scalar EOM
in terms of the redshift z instead of cosmic time t, so that the scalar field
equation now reads

φ′′
(a)(z) + fa(z)φ

′
(a)(z) + qa(z)φ(a)(z) = 0 , (3.4)

where

fa(z) ≡ H ′(z)

H(z)
− 2

z + 1
, (3.5)

qa(z) ≡ 3

(1 + z)2

×
[
β (1− 3ωa) + 4 γ χ(z) (1 + 3ωa) + 8λχ(z)2 (5 + 9ωa)

]
, (3.6)

the primes denote differentiation with respect to z, φ′(z) ≡ dφ(z)
dz , and

χ(z) ≡ (H(z)/M)2. We note that the form of the Hubble friction and “mass”
terms fa(z) and qa(z) depend on the effective energy density that drives the
cosmic evolution. In figure 1, we show the evolution of both the dimen-
sionless scalar field φ/φi and the dimensionless ratio ρφ/ρa for z < zi for
different values of β and fixed values of γ and λ. As previously noted, we ob-
serve in the figure that the contributions from higher-order curvature terms
do become relevant during the very early stage of the universe. We confirm
that the solution is strongly consistent with our initial assumption, as actu-
ally ρφ(z) ≪ ρa(z) for the whole range of numerical integration which goes
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Fig. 1. Top panels: Effective energy density ρφ relative to the energy density of
the cosmic fluid ρa. Bottom panels: Scalar field value relative to its initial value
fixed at zi = 1010. The values of the coupling constants are taken to be γ = 1 and
λ = 48/175.

from z = 0 to z = 1012. The main aspects of the scalar field dynamics can
be summarized as follows:

— During early times, or high redshift, m2
eff dominates over Hubble fric-

tion within the scalar field equation. However, as we “move” forward in
time, m2

eff decays much faster than the Hubble friction which rapidly
takes over, so it is expected that the scalar field freezes to a constant
way before entering the MD era.

— For even higher redshift values, the relative scalar field and the relative
energy density oscillate with ever increasing frequency.

— During radiation domination (RD), the scalar field is completely in-
sensitive to the value of β as the Ricci scalar identically vanishes, while
the relative energy density does marginally depend on such a constant
even though all the curves, for high enough z, eventually converge.

— By the time the MD era begins, the Ricci scalar stops being trivial,
and in fact it entirely determines the relative scalar and energy den-
sity evolution because the higher-order operators become irrelevant
considering that χ ∼ 10−36 ≪ 1 when z = 3600.
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As it was expected, the scalar field profile in the SECG exhibits a manifest
deviation from its quadratic counterpart for very high cosmological redshifts,
as can be appreciated in the two following figures.

Fig. 2. The continuous and dashed curves represent the profile stemming from
ESGB and SECG, respectively.

In figure 2, each color stands for the profiles obtained within both the
quadratic theory [11] (continuous curves) and SECG (dashed curves) for
different values of the astrophysical length L = M−1. We observe that the
scalar field equation in SECG only gets a small correction (as it should) with
respect to the Gauss–Bonnet quadratic theory during radiation domination
up to a specific redshift value where both terms become “competitive”. From
(3.6), we see that this roughly happens when γ ≈ 8λχ which implies, for the
L = 10 km case, a redshift value z ≈ 3.7× 1011, which lies before the BBN
epoch. Such a redshift value marks the “breakdown” of the EFT expansion
(EFTBD), in the sense that perturbativity is lost and we should not trust
the naive model anymore. In other words, in reality, any behavior of the
system beyond the EFTBD point should not be taken seriously as it does not
represent sensible perturbative physics because the system becomes strongly
coupled.
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