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The gravitational waves emitted by compact objects such as neutron
stars or black holes are characterized by quasinormal modes (QNMs). The
QNM frequencies encode information about the relic object, and — in
the most energetic cases — are sensitive to higher-curvature corrections to
General Relativity. Their stability depends on how the frequencies change
in response to perturbations, and the pseudospectrum allows us to quantify
these changes. In this work, we review how the pseudospectrum is used to
examine the stability of the gravitational modes of Schwarzschild black
holes. We then discuss ongoing work into applying these methods to the
quasinormal modes of a Yang–Mills soliton.
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1. Introduction

Black hole quasinormal modes (QNMs) encode the resonant response
to linear perturbations of the spacetime and their frequencies give us in-
formation about the characteristics of the black hole. For instance, the
fundamental frequency of a spherically-symmetric Schwarzschild black hole
in (3+1) dimensions depends on the black hole mass [1]. In the era of grav-
itational wave spectroscopy, we can use quasinormal modes to determine
characteristics of astrophysical black holes.

The analytical study of quasinormal modes of black holes began long
before the first operational gravitational interferometer, most notably with
works by Leaver [2], Nollert [3], and others [4]. It was noticed immediately
that these spectra were not always stable — in fact, different overtones
had different stability characteristics [5]. How the overtones react to differ-
ent perturbations is significant beyond the question of the stability of the
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spectrum itself. Since overtones are able to probe the region close to the
event horizon, they offer a window into a regime where deviations from
General Relativity could be detected in astrophysical black holes [6, 7].

The pseudospectrum provides the mathematical structure required to
systematically study the stability of the spectrum of quasinormal modes.
Calculating the pseudospectrum of an operator gives a type of topographic
map of quasinormal mode instability, where contour lines indicate the di-
rection of flow of unstable modes and the magnitude provides a measure
of the size of perturbation required to shift a quasinormal mode. However,
the construction of the pseudospectrum relies on a more rigorous definition
of QNMs than is normally employed and this is achieved via the process
of hyperboloidal compactification. Using hyperboloidal slices to approach
future null infinity allows us to define the spectral problem in terms of sin-
gular Sturm–Liouville operators, thereby replacing the imposition of bound-
ary conditions on the wave function by the requirement of regularity of the
eigenfunctions of the operator.

This work is organized into two main parts. First, in Section 2, we dis-
cuss the application of hyperbolic compactifications, define the pseudospec-
trum, and review results from [8] regarding the stability of the QNMs of
spherically-symmetric black holes. Then in Section 3, we introduce solitons,
their dynamics, and show how the pseudospectrum can be used to investigate
signs of resonant behaviour in their final states. We also present in-progress
findings and discuss ongoing research.

2. Quasinormal modes and the pseudospectrum

Without loss of generality, consider a massless scalar field on a sta-
tionary, spherically-symmetric, black hole background. In the standard
Schwarzschild coordinates, we have

2Ψ = 0 , ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.1)

After rescaling the field by Ψ = r−1ϕ, we can define the tortoise coordinate
generically as dr/dr∗ = f(r). Spherical symmetry and time independence
of the metric functions imply a decomposition of the scalar field such that
we recover the Schrödinger-like master equation1

∂2ϕ

∂r2∗
=
(
V − ω2

)
ϕ . (2.2)

1 For the sake of simplicity, radial and angular indices are suppressed throughout the
discussion, and coordinates are defined only up to a rescaling factor. See [8] for
details.
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In these coordinates, the black hole horizon is located at r∗ → −∞ while
spatial infinity is r∗ → ∞, and the potential term goes to zero at each limit.
The conventional asymptotic form of ϕ is taken to be a superposition of free
waves. Since classical solutions can neither emerge from the event horizon
nor enter the system from infinity, the solutions for ϕ at these limits are
normally restricted to be either purely incoming or purely outgoing waves.
However, unlike a purely spatial problem, the spacetime definition of the
radiative zone (where degrees of freedom propagate as free waves) is not
simply r∗ → ∞. Rather, it is future null infinity I +, defined as the limit
of r∗ → ∞ at constant retarded time u = t− r∗ that defines the radiative
zone. A hyperboloidal approach to I + benefits from allowed coordinate
redefinitions while also respecting the radiative limit.

Since energy can leave the system through either boundary, the system is
non-conservative. The evolution of any non-conservative system is described
by a non-self-adjoint (non-Hermitian) operator with quasinormal modes as
its eigenvalues [9]. This definition informs the procedure for calculating the
QNMs: define an approach to I + in terms of a spacelike hypersurface, then
recast the QNM problem as an eigenvalue problem for a non-self-adjoint
operator.

2.1. Hyperboloidal compactification

We now apply the unspecified hyperboloidal compactification{
t = u− h(x)

r∗ = g(x)
(2.3)

to (2.2), where u = const. is a horizon-penetrating hyperboloidal slice that
intersects I +. Under this transformation, the scalar field master equation
becomes([

1−
(
h′

g′

)2 ]
∂2u − 2

g′

[
h′

g′

]
∂2ux −

1

g′
∂x

[
h′

g′

]
∂u − 1

g′
∂x

[
1

g′
∂x

]
+ V

)
ϕ = 0 ,

(2.4)
Performing a time reduction via ψ ≡ ∂uϕ, we can write (2.4) in terms of two
Sturm–Liouville operators, L1 and L2, acting on ϕ and ψ

∂2uϕ = L2∂uϕ+ L1ϕ , (2.5)

with the operators defined as

L1 =
1

ρ(x)

(
−∂x(p(x)∂x) + V̂ (x)

)
, (2.6)

L2 =
1

ρ(x)
(2γ(x)∂x + ∂xγ(x)) . (2.7)
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Note that p(x) must satisfy p(x = ±1) = 0 and ρ(x) must be strictly posi-
tive on the open interval x ∈ (−1, 1) [10]. These characteristics, plus regu-
larization conditions on the eigenfunctions, encode the classically-motivated
boundary conditions into the construction of the operator L1.

Finally, we define the vector Φ = (ϕ, ψ)T and use a Fourier decomposition
of the form Φ(u, x) = Φ(x) eiωu such that the spectral problem is(

0 1
L1 L2

)(
ϕ
ψ

)
= iω

(
ϕ
ψ

)
. (2.8)

2.2. The pseudospectrum

To introduce the pseudospectrum, consider an operator A with left- and
right-hand eigenvectors wi and vi that solve

A†wi = λ̄iwi and Avi = λivi . (2.9)

The perturbed operator A(ϵ) = A+ ϵ δA with ϵ > 0 and ||δA|| = 1 can simi-
larly be solved by eigenvectors wi(ϵ), vi(ϵ) whose eigenvalues are λ̄i(ϵ), λi(ϵ).
The perturbed eigenvalues satisfy

|λi(ϵ)− λi| ≤ ϵ
||wi|| ||vi||
|⟨wi, vi⟩|

+O
(
ϵ2
)
. (2.10)

When A is a self-adjoint operator, A = A† and the difference between per-
turbed and unperturbed eigenvalues is of the order of ϵ. This is referred to as
spectral stability: a perturbation of the operator produces a shift in eigenval-
ues that is proportional to the size of the perturbation. On the other hand,
when the operator is non-self-adjoint, it may be the case that |⟨wi, vi⟩| ≪ 1
and so the shifted eigenvalues are much farther from the unshifted spectrum.
This is known as spectral instability.

The pseudospectrum quantifies the stability of an operator by comparing
the deviation of the perturbed spectrum from the unperturbed one through
the resolvent of the operator RA(λ) = (λ1 − A)−1. This definition is more
conducive to use with non-self-adjoint operator, and is given by

σϵ(A) =

{
λ ∈ C : ||RA(λ)|| = ||(λ1 −A)−1|| > 1

ϵ

}
. (2.11)

Note that the discussion of spectral stability and the pseudospectrum
always relies on an operator norm to set the scale of the deviations from
the unperturbed spectra. Therefore, it is essential to define the scalar inner
product that determines the norm. Since the system is non-conservative,
the conventional definition of the norm is no longer appropriate. Instead,
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the total energy contained in a spatial slice and associated with the scalar
field in (2.4) provides a more natural basis [11]. In terms of the time-reduced
variables, the energy norm for solutions to the spectral problem of Eq. (2.8)
is defined as

||Φ||2E = E(ϕ, ψ) =
1

2

b∫
a

(
ρ(x)|ψ|2 + p(x)|∂xϕ|2 + V̂ (x)|ϕ|2

)
dx . (2.12)

Using the definition ||Φ||2E = ⟨Φ,Φ⟩E , the energy inner product is

⟨Φ1, Φ2⟩ =
1

2

b∫
a

(
ρ(x)ψ̄1ψ2 + p(x)∂xϕ̄1∂xϕ2 + V̂ ϕ̄1ϕ2

)
. (2.13)

When constructing the pseudospectrum for the system (2.8), we must use
the energy norm || · ||E .

We have now established the essential ingredients for the study of quasi-
normal modes: (i) the hyperboloidal compactification, (ii) defining a non-
self-adjoint operator whose eigenvalues are the QNM, and (iii) the energy
inner product.

2.3. Schwarzschild black hole

In [8], the pseudospectra for different scalar field modes on a Schwarz-
schild background2 were calculated (see figure 1). First, the Pöschl–Teller
potential was used to approximate the potential term for a purely radial
scalar mode, i.e. when ℓ = 0. In figure 1 (a), the contour lines predict

(a) ℓ = 0 modes (b) ℓ = 2 modes

Fig. 1. Pseudospectra for scalar field modes around a Schwarzschild black hole
in [8]. Eigenvalues are indicated by red circles; log10 ϵ is indicated by the colour
bar on the right.

2 See [12] for the Riessner–Nordström geometries.
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that the fundamental mode ω0 is the most stable, while higher overtones
are increasingly unstable. In figure 1 (b), the pseudospectrum of the ℓ = 2
scalar modes is shown, overlaid with the response to an added perturba-
tion of δV̂ (x) = cos(2πkx) to the rescaled potential V̂ (x) in (2.6). Varying
the magnitude and frequency of δV̂ (x) produces eigenvalues shown as blue
markers. Note the agreement with the contour lines of the pseudospectrum.

Given how much information the pseudospectrum can provide about the
stability of the QNMs, we now wish to apply this method to a new type of
system: the soliton.

3. Solitons

Solitons are broadly defined as localized solutions that carry topologi-
cal charge. Solitons that interpolate between degenerate minima are known
as kinks and are some of the simplest examples of solitons, being present
in (1+1)-dimensional field theories such as the sine-Gordon model and ϕ4

theory. Despite their simple structure, the dynamics of kink collisions are
governed by resonant scattering due to the transfer of energy between kine-
matic and internal degrees of freedom [13]. In some cases, resonant scattering
is mediated by the quasinormal modes of the kinks [14].

Asymptotically, solitons have been proven to behave in a much more
predicable manner: the final state must always be a simple superposition
of a static soliton and an alternating series of rescaled solitons, plus radia-
tion [15]. In [16], we demonstrated this conjecture for the (4+1)-dimensional,
equivariant Yang–Mills soliton. We also noted a bifurcation in the final state
depending non-monotonically on a single input parameter. In order to de-
termine if this is a result of a resonant process mediated by QNMs, we will
examine the stability of the kink spectrum using the pseudospectrum.

Consider the equation for the Yang–Mills potential f(t, r) in 4+1 dimen-
sions with r ∈ [1,∞)

∂2

∂t2
f(t, r) =

∂2

∂r2
f(t, r) +

2f(t, r)

r2
(
1− f2(t, r)

)
. (3.1)

Equation (3.1) possesses two vacua, namely f = ±1. A static solution known
as the half-kink, Q(r), is a global minimizer of energy. To examine the decay
of perturbations around the half-kink, we defined the null coordinate u =
t− r and compactified the space via x = r−1/2. After linearizing around the
half-kink, we found a pair of quasinormal modes3 ω = ±0.476858−0.364322i
analytically using Leaver’s method [2] and verified the result numerically.

3 In [16] the convention for QNM frequencies did not include an explicit factor of i.
Here we rewrite the result to agree with the convention of this work.
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3.1. Hyperboloidal compactification and the Yang–Mills soliton

Following the prescription for hyperboloidal compactification in [7], we
can rewrite the equation for f in terms of unspecified compactification func-
tions g(x) and h(x). Linearizing around the half-kink, f(u, x) = Q(x) +
c(x)ϕ(u, x), where c(x) is a rescaling function that is used to write the equa-
tion for ϕ in terms of the Sturm–Liouville operators as in (2.8). In figure 2,
we show the result of calculating the eigenvalues of perturbations around the
half-kink at increasing resolutions. We recover one complex conjugate pair
of eigenvalues and three small, purely imaginary eigenvalues. The purely
imaginary eigenvalues correspond to non-oscillating decays and, due to their
small coefficients, will form the asymptotic tails observed in [16].
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Fig. 2. Top: The eigenvalues for linear perturbations around the half-kink for reso-
lutions N = 100 (large orange circles), N = 110 (medium green circles), and N =

120 (small red circles). Bottom: the pseudospectrum with eigenvalues overlaid.

As work on the application of the pseudospectrum to solitons contin-
ues, we will examine the response of the eigenvalues to both random and
deterministic perturbations of the potential term in (2.6). Of particular in-
terest will be any stability of the spectrum to specific frequencies, as stable
QNMs may facilitate the resonant behaviour responsible for the observed
bifurcation in asymptotic states.
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