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Construction of a generalization of electromagnetic Hopfions for de Sit-
ter spacetime is briefly presented. We analyze non-trivial properties of field
lines of the solution.
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1. Introduction

In Minkowski spacetime, Maxwell’s equations allow for curious solutions
characterized by non-trivial topological properties of field lines. One inter-
esting example is the Hopfion solution. The Hopfion is a ‘solitonary’ solution
of Maxwell' theory which has rich a topological structure related to the Hopf
fibration. The characteristic structure of Hopfion can be easily seen on the
integration curves of the vector field (see [2]). The structure of closed, linked
field lines of Hopfions propagates without intersections along the light cone.

The aim of the paper is to obtain a Maxwell field on de Sitter back-
ground with analogical properties. The results are organized as follows: In
Section 2, a brief survey of used reduced electromagnetic data is presented,
together with a construction of a family of Hopfion-like solutions in de Sit-
ter spacetime. Section 3 contains an analysis of topological properties of
the generalized Hopfion in de Sitter spacetime. Analogically, Hopfion-like
solutions in de Sitter spacetime can be obtained for linearized gravity. It is
briefly described in Section 4.

* Presented by T. Smotka at the 8" Conference of the Polish Society on Relativity,
Warsaw, Poland, 19-23 September, 2022.
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! In general, the Hopfion solutions of spin-N field are known in Minkowski spacetime.
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1.1. Conformal flatness of de Sitter spacetime

Let us recall the standard form of de Sitter metric in stationary coordi-

nates
2

r
f(r)?
where o4pdz?dz? = d6? 4 sin?0d¢? is a standard unit sphere metric
and z# denotes angular coordinate. We have f(r) = v1—k2r2 k € Ry,
r e Ry \ {%}, and 6, ¢ being the standard coordinates parameterizing a

two-dimensional sphere. We ignore the coordinate singularities sinf = 0.
The metric can be transformed into the conformally Minkowskian form

g= —f(1")2d152 + + r2oagdz? daP , (1)
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where S? = —T? + X2 4+ Y2 + Z2. The coordinate transformation which
brings (2) into (1) reads
f(r)sinh kt
k(1—f(r)coshkt)
_ rsinfcos¢
~ 1—f(r)coshkt’
_ rsinfsing¢ (3)
~ 1—f(r)coshkt >
rcosf
1—f(r) cosh kt *

N < xS

2. Reduced data for Hopfions-like solutions in de Sitter spacetime

2.1. Brief overview of reduced data description

In the paper, we use the reduced data which in its principle is based on
the conformal Yano—Killing two-form?. In particular, it is defined for type-D
spacetimes. The construction for Kerr spacetime is presented in [4].

The proposed reduced data has turned out to be very effective in the anal-
ysis of Hopfions in Minkowski spacetime [5]. In the case of de Sitter space-
time, we perform our research in static coordinates (t,r,0,¢) in which the
metric has the form of Eq.(1). Consider a foliation of two-dimensional

2 The conformal Yano—Killing is a generalization of the conformal Killing covector field
to anti-symmetric two-forms. The reduced data is geometrically given by

? v
@ = 3 [Fuv — 2(xF)] Q" (4)
where 12 = —1 and F,, and %F,, are Maxwell field and its Hodge dual companion
respectively. Q. denotes the conformal Yano—Kiling tensor. See [4] for details.
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spheres parameterized by radius r. Quasi-locally, on each sphere, vac-
uum Maxwell equations in a complex form can be encoded in terms of re-
duced data

o =17 (5)
) F(r)
O (Vaethz*) =0, - 2
Oh(r®) = =2 =7 (6)
kE_ ¢ klm 1A
6tZ = —mal (NE Zm) 5 fq(j;)
O(rd) = 1———eBapZy, (7)

vdet h

where (5) is the definition of reduced data. Z = E + 1B is called the
Riemann—Silberstein vector field. Let X, be a spatial part of {t = const.}
hypersurface. Coordinates on Y; contain small Latin indices. The induced
metric on Y is denoted by hydz*da!. Z|‘|4A = 1/v/det 004 (V/det UZA) is a

two-dimensional divergence on a unit sphere. The Levi-Civita tensors obey
€0 = 90 =1,

2.2. Generalization of reduced data for Hopfions

For the construction of the Hopfion-like solutions in de Sitter space, we
use the formalism of reduced data. We highlight that simply conformally
transforming the Hopfion electromagnetic tensor from Minkowski space to
de Sitter would, in principle, result in a valid solution due to Maxwell equa-
tions being conformally covariant. However, such a transformation does not
preserve the surfaces of constant time, thus resulting in a solution without
the remarkable topological properties of the Hopfion field. Therefore, we
construct the electromagnetic field in situ, using reduced data obtained as
a conformal transformation of the Hopfion scalar for Minkowski space.

In Minkowski space, the reduced data for generalized Hopfions® — I-pa-
rameter family of electromagnetic solutions (see [5]) in Cartesian coordinates
reads

(Z +1X)!
[—(T —18)2 + X2 4+ Y2 4 721

Applying the conformal transformation (3) to Hopfion reduced data (8), we
obtain, up to a constant overall factor, a formula for reduced data in static
coordinates

(8)

&) =

3 In [5], equation (8) is given, up to rotation, as (2.12) with 8 = 1. Let us highlight that
rescaling of the coordinates (¢, z,y, z) — (at, az, ay, az) enables one to set 8 =1 for
non-zero . During the rescaling, ¢; modifies up to a constant overall factor, which
does not change the behavior of the solution.
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rl(cos 6 + 1sin 6 cos ¢)!

(14 k282) + (1 — k282) f(r) cosh kt + 20k f(r) sinh kt] ™! ®)

However, the reduced data (9) do not lead to (8) as a limit & — 0. It can
be corrected by a rescaling of the 8 parameter as
2
=, 10
o= a7 (10)

then the reduced data reads

|
rl(cos § + 1sin 6 cos ¢)! (k262>

Py = (11)

[((B2k2 — 4) cosh(kt) + 4131{: sinh(k:t)) Fr) + szQ 4 I+1

Passing to the limit k& — 0, we obtain up to the overall constant factor
equation (8) with g = S.

3. Topological properties of the solutions

Setting | = 1 and rescaling by a constant overall factor equation (11), we
obtain the generalization of classical Hopfion for de Sitter spacetime. By X
we denote spatial part of {t = 0}. We wish to analyze topological properties
of this particular choice of solutions on Xy including the behavior near the
horizon.

Let us display explicitly the generalization of classical Hopfion for de
Sitter spacetime

- f(r)(cosf + vsinf cos ¢
in 6 in¢— 0
79 _ &sin @ + ¢ sin fQ 1€ coSs ¢ cos 7 (13)
o _ wcospcost +i€sing — (sinb
Z0 = sin Or2 ’ (14)

where
T = (B%Q cosh(kt) + 443k sinh(kt) — 4cosh(kt)) Fr)+ K232 +4, (15)

o ((k?é? — 4) cosh(kt) + 415?;@(“) + (k?é? + 4) f(r)) ")

wr? (k'?’BQ sinh(kt) + 418k? cosh(kt) — 4k sinh(k:t))
¢ = = . (17)
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The solution is explicitly obtained from (11) and (5)—(7). The recovery
procedure of Z from @ is based on the Hodge-Kodaira decomposition®.

The generalized Hopfions in de Sitter spacetime share the remarkable
topological properties of classical Hopfions in Minkowski spacetime (see [6]),
in that the electric and magnetic field lines on X form toroidal structures
analogical to Hopf fibration. Recall that the Hopfion-like solution is given
in the static coordinates (¢,r, 6, ¢) of de Sitter spacetime. To investigate the
field lines analytically, we introduce radial rescaling, given by

4R
= 19
P e (19)
where R = /22 + y2 + 22. With this transformation, the induced three-
dimensional metric is expressed as
16 2 2 2
9l=0y = A+ 2R2)? (dz” + dy* + d2?) . (20)

The associated Cartesian-like set of coordinates is related with toroidal co-
ordinates by

sinhn

=pf——"1 21
* ﬁcoshn—cosa 059, (21)
5 inh
y = BT —sing, (22)
coshn — coso
L sin o (23)

coshn — coso’

and gives rise to a simple form of the electric field E* on Xy:

4 Briefly, the angular part of the Riemann—Silberstein vector can be decomposed into
gradient and co-gradient of some potentials. In terms of the co-vector field

Za= aAf"’ (7”2 Sine)_lgAcECBaBT]. (18)
Equations (5)—(7) enable one to find formulae for potentials. Defining ®;—; by
@11 = D11 (cos 0 + 15in b cos ) ,

where ®;—; is a function of t,r only, we obtain
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E" =0, (24)
e (coshn — cos o) ((4 + k26-2> coshn — (4 - k25~2) cos 0)2 o)
640 cosh®
56 _ (coshn — cos o) ((4 + k25~2> coshn — <4 - k26~2> cos 0)2 )
640 cosh? 7

Given that the n component of the electric field is zero, the field lines are
confined to two-dimensional surfaces parameterized by 7, which turn out to
be tori given by the family of equations in the Cartesian-like coordinates

22+ (\/x2+y2—Bcothn>2= ﬁ—Q (27)

sinh?7n

Indeed, the structure of field lines, which is presented in figure 1, forms
a structure of linked, closed circles. Each two lines are linked only once.
Choosing the initial data properly on the tori-surface, the integral curves
do not leave the tori. The field line on the symmetry axis is analytically
investigated in Section 3.1. The magnetic field manifests a similar toroidal
structure but rotated in the ZX plane by 90 degrees.

Fig. 1. Field lines for the electric field, forming toroidal structures inside the cosmo-
logical horizon. Both figures present a particular choice of integral curves in static
coordinates from different perspectives. The sphere represents the cosmological
horizon.
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The most intriguing questions are raised for

2+ kB
n§10g<2_k5> : (28)

for which the topological structure of generalized Hopfions is interacting with
the cosmological horizon. One can check that for n fulfilling (28), the tori
intersect non-trivially with the horizon. We plan to give a detailed analysis
of the behavior of the field in a separate paper [1].

8.1. Field line which reaches the horizon in finite time

The structure of the electric field given by formulas (12) allows us to
investigate two distinguished field lines on X, corresponding to two degen-
erate tori — the OZ axis and a ring in the XY plane. The electric field at
t = 0 in static coordinates is explicitly given by

4k* 341 = k2r2 cos 0

E" = - (29)
(k232 + 4+ (k252 — 4) VI—422)
o _4kz4B4 ((—4 - k2ﬁ2> - (4 - k252) m) o, (0)
r <4 + k2532 4 (—4 + k232> m)g ’
b _ 16K55° . (31)

(44 8282 + (4 + p22) mf’

Thus, setting 8 = 0, finding the integral curve reduces to a one-dimensional
problem. The equation
i(s) = E"(r(s)) (32)
is readily solved by the separation of variables. A direct calculation shows
that a field line starting at the origin reaches the horizon in finite time,
precisely given by ~ ~
(8 + 3m)k*B* + 87k?B2 4 16(31 — 8)
16k5 34 '
In turn, we can set § = 5. The radial component vanishes, so as long
as the #-component of the field would remain zero, a circular integral line in

the XY -plane would arise. Setting E? = 0, we obtain an equation for the
radius of the said field line

(33)

Shorizon =

45
4+ K232
This field line in conformal coordinates coincides with the focal ring of the
tori given by (27).

(34)

Tfocus =
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4. Linearized gravity Hopfion-like solutions
on de Sitter background

The reduced data for electromagnetism, presented in Section 2.1, is gen-
eralized for linearized gravity. In the case of the Kottler background, the
construction is given in [3]. A dedicated analysis for wave solutions on the
de Sitter background is a generalization of appendix C.3 in [5]. It will be
presented in [1]. We highlight that the reduced data

v =9, (35)

viewed (11) as reduced data for the linearized gravity. The linearized gravity
solution has analogical properties to the EM solution. It will be analyzed in
detail in a separate paper [1].
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