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We introduce a new operator representing the three-dimensional scalar
curvature in loop quantum gravity. The operator is constructed by writing
the Ricci scalar classically as a function of the Ashtekar variables and reg-
ularizing the resulting expression on a cubical spin network graph. While
our construction does not apply to the entire Hilbert space of loop quan-
tum gravity, the proposed operator can be applied to concrete calculations
in various approaches which are derived from the framework of full loop
quantum gravity using states defined on cubical graphs.
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1. Introduction

Loop quantum gravity (see e.g. [1–3]) is one of the main approaches to
the problem of quantum gravity, providing a concrete realization of a quan-
tum theory of gravity as a theory of quantum geometry. Accordingly, a key
role in the theory is played by quantum operators representing geometrical
quantities such as volumes, areas, lengths, and angles. Another example is
the three-dimensional Ricci scalar (in the setting of a 3+1 decomposition of
general relativity), which is relevant to loop quantum gravity both as a fun-
damental geometrical observable characterizing the curvature of the spatial
manifold, as well as a possible ingredient for the dynamics of the theory.
Indeed, the Hamiltonian constraint of general relativity can be expressed in
the Ashtekar variables [4, 5] as
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with the scalar curvature replacing the expression of the Lorentzian term
in terms of the extrinsic curvature, whose use in loop quantum gravity was
popularized by the pioneering work of Thiemann [6].

An operator representing the scalar curvature in loop quantum gravity
has been introduced previously in [7]. The construction is based on the
ideas of Regge calculus, where the smooth physical manifold is approximated
by a fictitious auxiliary manifold of singular geometry, where curvature is
concentrated entirely on one-dimensional line segments. In our article [8],
we propose a much more direct approach towards the quantization of the
Ricci scalar. To bypass a certain technical difficulty, which will be touched
upon in Section 3, we do not attempt to define our operator on the entire
Hilbert space of loop quantum gravity. Instead, the operator is constructed
on the space of states defined on a fixed cubical spin network graph. As
such, our operator can be applied to calculations in models such as quantum-
reduced loop gravity [9–11] and effective dynamics [12–14], which are derived
from the formalism of loop quantum gravity using states defined on cubical
graphs. Moreover, the framework of algebraic quantum gravity [15, 16] has
shown how a mathematically complete quantization of the gravitational field
can be achieved entirely in terms of states defined on a single cubical graph.

2. Classical preparations

The classical object which we wish to promote into an operator in loop
quantum gravity is the three-dimensional Ricci scalar integrated over the
spatial manifold, i.e. ∫

d3x
√
q (3)R . (2)

Our construction begins by expressing the integrand in (2) directly in terms
of the Ashtekar variables. In the metric formulation, the Ricci scalar is given
by the expression

(3)R = qab
(
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where Γ a
bc are the Christoffel symbols corresponding to the spatial metric

qab. The spatial metric is related to the densitized triad Ea
i by

qab =
Ea

i E
b
i

|detE|
. (4)

Inserting Eq. (4) into Eq. (3) and carrying out a straightforward (if rather
lengthy) calculation, we obtain an expression for the Ricci scalar as a func-
tion of the densitized triad and its first and second derivatives. For our
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present discussion, we express this relation symbolically as

√
q (3)R = R

(
Ea

i , ∂aE
b
i , ∂a∂bE

c
i

)
. (5)

The explicit expression of the function R is reported in [8].
The function R

(
Ea

i , ∂aE
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)
is not manifestly invariant under

the SU(2) gauge transformations corresponding to internal rotations of the
densitized triad, due to the non-covariant transformation properties of the
partial derivatives of the triad. Consequently, it would be difficult to ensure
that a gauge-invariant curvature operator is obtained if the Ricci scalar is
quantized on the basis of Eq. (5). A more appropriate starting point for
quantization can be found by replacing the partial derivatives of the triad
with the gauge covariant derivatives defined by

DaE
b
i = ∂aE

b
i + ϵ k

ij Aj
aE

b
k , (6)

where Ai
a is the Ashtekar connection. Under a local SU(2) gauge trans-

formation described by a gauge function g(x) ∈ SU(2), the matrix-valued
variable DaE

b = DaE
b
i τ

i transforms as DaE
b(x) → g(x)DaE

b(x)g−1(x).
When Eq. (6) is used to express the partial derivatives in Eq. (5) in terms

of the gauge covariant derivatives, a direct calculation shows that the partial
derivatives can be substituted with covariant derivatives “for free” (the terms
proportional to the connection Ai

a cancel out among themselves) provided
that the second partial derivative ∂a∂bE

c
i is replaced with the symmetric

part D(aDb)E
c
i of the second covariant derivative. That is, the Ricci scalar

is the same function of the triad and its gauge covariant derivatives, as of
the triad and its partial derivatives

√
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b
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c
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)
. (7)

Thanks to the covariant transformation law of the covariant derivatives, the
right-hand side of Eq. (7) is manifestly SU(2) gauge invariant, and it is this
expression that we take as the classical starting point for the construction
of the curvature operator.

3. Regularization on a cubical graph

Now the task is to turn expression (7), integrated over the spatial man-
ifold, into an operator on the Hilbert space of loop quantum gravity. To
accomplish this, the integral must be regularized by expressing it in terms
of elements which correspond to well-defined operators in loop quantum
gravity. The classical variables corresponding to the elementary operators of
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loop quantum gravity are holonomies (parallel propagators) of the Ashtekar
connection along one-dimensional curves and fluxes of the densitized triad
through two-dimensional surfaces, but as we will soon see, certain combina-
tions of these operators can also turn out to be very useful.

The kinematical Hilbert space of loop quantum gravity is spanned by
the so-called spin network states. A spin network state is labeled by a
graph Γ together with a spin quantum number je for each edge of the graph
and a SU(2) tensor ιv (of appropriate index structure) for each vertex1.
However, constructing a consistent regularization of the covariant derivatives
of the triad on graphs of arbitrary, irregular shape is a complicated technical
challenge, to which we have no satisfactory solution at the moment. We
therefore restrict ourselves to the much more modest problem of defining the
curvature operator on the Hilbert space of states based on a fixed cubical
graph, i.e. a graph whose vertices are six-valent, and whose edges are aligned
with the coordinate directions of a fixed Cartesian background coordinate
system.

To regularize the integrated scalar curvature on the lattice provided by
the cubical graph, we partition the spatial manifold into cubical cells 2,
such that every cell contains a single vertex of the graph. For simplicity, we
assume that each cell is a cube of coordinate volume ϵ3. For every vertex
v, we introduce a family of three surfaces, denoted by Sa(v) (a = x, y, z),
within the corresponding cell 2. Each surface contains the vertex v and
is dual to the corresponding coordinate direction, i.e. the coordinate xa

is constant on the surface Sa(v). The integrated Ricci scalar can then be
approximated as a Riemann sum associated with the cubical partition∫

d3x
√
q (3)R ≃

∑
2

ϵ3
√

q(v2)
(3)R(v2) , (8)

where v2 denotes the vertex contained in the cell 2.
When Eq. (7) is used to express the integrand in Eq. (8), each instance

of the densitized triad can be approximated by the flux variable

Ei (S
a(v)) =

∫
Sa(v)

d2σ naE
a
i (9)

which satisfies Ei (S
a(v)) = ϵ2Ea

i (v) +O(ϵ3) for small values of the regular-
ization parameter ϵ. As for the regularization of the covariant derivatives

1 A distinction is often made between generalized spin network states, which carry
arbitrary tensors at their vertices and span the entire kinematical Hilbert space, and
proper spin network states, which are labeled by invariant tensors and span the gauge-
invariant Hilbert space (with respect to SU(2) gauge transformations generated by
the Gauss constraint operator).
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DaE
b
i , the appropriate technical tool is provided by the so-called parallel

transported flux variable (also known as the gauge covariant flux in the
literature). The parallel transported flux variable is defined by

Ẽ(S, x0) =

∫
S

d2σ na(σ)hx0,x(σ)E
a
i (x(σ)) τ

ih−1
x0,x(σ)

, (10)

where hx0,x(σ) are holonomies of the Ashtekar connection, which connect
each point x(σ) on the surface S to a fixed point x0 (on the surface or outside
of it) along a chosen system of paths px0,x(σ). Under a local SU(2) gauge
transformation, the parallel transported flux variable transforms covariantly
at the point x0: Ẽ(S, x0) → g(x0)Ẽ(S, x0)g

−1(x0).
For a given vertex v, let v−a and v+a denote the vertices which come

before and after v in the direction of the xa-coordinate axis. Using the
parallel transported flux variable, we construct the object

∆aE
(
Sb, v

)
=

Ẽ
(
Sb(v+a ), v

)
− Ẽ

(
Sb(v−a ), v

)
2

, (11)

where the parallel transports to the central vertex v are taken along the
edges connecting v+a and v−a to v. The variable defined by (11) represents a
discrete approximation of the covariant derivative DaE

b at v, corresponding
to a symmetric discretization2 of the form

f ′(x) ≃ f(x+ ϵ)− f(x− ϵ)

2ϵ
. (12)

Expanding the right-hand side of Eq. (11) in powers of ϵ, one finds

∆aE
(
Sb, v

)
= ϵ3DaE

b(v) +O
(
ϵ4
)
, (13)

confirming that the variable ∆aE
(
Sb, v

)
indeed correctly approximates the

covariant derivative of the triad. The same technique can be applied to
regularize the second covariant derivatives, using the template

f ′′(x) ≃ f(x+ ϵ)− 2f(x) + f(x− ϵ)

ϵ2
(14)

for the diagonal second derivatives D2
aE

b, and the symmetric discretization

∂2f(x, y)

∂x∂y
≃ 1

4ϵ2

(
f (x+ ϵ, y + ϵ)− f (x+ ϵ, y − ϵ)

−f (x− ϵ, y + ϵ) + f (x− ϵ, y − ϵ)
)

(15)

2 The symmetric discretization is chosen in order to avoid introducing a preferred
direction, since if one is given only a state defined on a cubical graph, there is no
way to unambiguously determine which direction should be identified as the positive
direction of any given coordinate axis.
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for the mixed second derivatives DaDbE
c. With a judicious choice of the

paths involved in the parallel transported flux variables, one can arrange
that the resulting discretized variable ∆abE (Sc, v) is symmetric in a and b,
and hence provides an approximation of the symmetric part of the second
covariant derivative

∆abE (Sc, v) = ϵ4D(aDb)E
c(v) +O

(
ϵ5
)
. (16)

4. The curvature operator

The regularization of the integrated Ricci scalar is now completed by
replacing the continuous variables in Eq. (7) with their discretized counter-
parts. This results in the regularized expression∫

d3x
√
q (3)R ≃

∑
2

R
(
Ei

(
Sa(v2)

)
, ∆aEi

(
Sb, v2

)
, ∆abEi (S

c, v2)
)
, (17)

the discrete sum approximating the continuous integral in the limit of small
regularization parameter. The factors of ϵ are precisely absorbed in the
discretized variables with no factors left over, reflecting the fact that the
integrand is geometrically a density of weight 1.

All of the discretized variables on the right-hand side of Eq. (17) corre-
spond to well-defined operators in loop quantum gravity. The integrated
Ricci scalar can therefore be quantized simply by “putting hats” over these
variables3. When applied on a state in the Hilbert space of the fixed cubical
graph Γ0, the resulting operator takes the form of(

̂∫
d3x

√
q (3)R

)
|Ψ0⟩ =

∑
v∈0

R̂v |Ψ0⟩ , (18)

where R̂v denotes any symmetric factor ordering of the operator

R
(
Êi

(
Sa(v)

)
, ∆̂aEi

(
Sb, v

)
, ∆̂abEi (S

c, v)
)
. (19)

3 Precisely speaking, we have neglected to discuss the quantization of the factors of
detE appearing in the classical expression (7). The treatment of these factors is
standard, relying on techniques which are routinely used in the literature of loop
quantum gravity. In particular, to account for the zero eigenvalues present in the
spectrum of the volume operator, negative powers of the volume element

√
|detE|

are quantized using the Tikhonov-type regularized inverse

V̂−1
v ≡ lim

δ→0
V̂v

(
V̂ 2
v + δ2

)−1

of the local volume operator V̂v (see e.g. [17]).
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The operator R̂v was studied in [18] in the simplified kinematical setting
of quantum-reduced loop gravity. In particular, we looked at expectation
values of curvature in the standard basis states on the Hilbert space of the
quantum-reduced model. We found that the expectation values tend to be
markedly negative in a large class of states where one would a priori not
expect either sign of the curvature to be strongly favoured. Since the states
considered in our calculations lack any definite semiclassical interpretation,
the physical significance of this result is not completely clear. However,
on a technical level, the negative expectation values can be traced back to
the regularization of second derivatives represented by Eq. (14). If further
calculations confirm that the problem of negative expectation values is en-
countered also in physically more realistic states, we expect that the problem
could be resolved by using a modified discretization of second derivatives,
where the central vertex v is avoided altogether but one has to use four
vertices instead of three to discretize the diagonal components of the second
derivative.

5. Conclusions

We have proposed a new operator representing the three-dimensional
scalar curvature in loop quantum gravity. The classical starting point of our
work is to express the Ricci scalar directly as a function of the densitized
triad and its gauge covariant derivatives. Due to difficulties associated with
regularizing the covariant derivatives on arbitrary spin network graphs, we
define our operator on the Hilbert space of a fixed cubical graph. From the
perspective of full loop quantum gravity, the assumption of a cubical graph
represents a significant limitation, and extending the construction to more
general graphs is certainly an interesting question for future work. However,
our construction is general enough to cover several physically motivated
models of loop quantum gravity (quantum-reduced loop gravity, the effective
dynamics approach) as well as algebraic quantum gravity, which provides a
reformulation of loop quantum gravity in terms of states defined on a single
cubical graph.

In the continuation article [18], calculations were performed to probe the
properties of the new curvature operator on the Hilbert space of quantum-
reduced loop gravity. Our results indicate that the expectation values of
curvature are consistently negative in certain states where one would intu-
itively think that neither sign of curvature should be clearly preferred over
the other. This issue should be further clarified through a detailed semi-
classical analysis of the curvature operator, in which one would study the
peakedness properties of the operator with respect to semiclassical states
peaked on given classical configurations (e.g. a flat spatial geometry). If
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such calculations confirm that the expectation values of our operator are
distributed too strongly towards the negative side, we expect that the prob-
lem could be resolved through a simple modification of the regularization of
second covariant derivatives of the triad, as outlined in [18].

This work was funded by the National Science Centre (NCN), Poland
through grants Nos. 2018/30/Q/ST2/00811 and 2022/44/C/ST2/00023.
For the purpose of open access, the author has applied a CC BY 4.0 public
copyright license to any author accepted manuscript (AAM) version arising
from this submission.
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