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We quantize the solution to the massive model of the Belinski–Khalat-
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Classical deterministic chaotic behavior of the BKL scenario turns under
quantization into stochastic chaos.
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1. Introduction

The Belinski, Khalatnikov, and Lifshitz (BKL) conjecture states that
general relativity includes the solution with generic gravitational singular-
ity [1, 2]. The evolution towards the BKL singularity, the so-called BKL
scenario, consists of the deterministic dynamics turning into chaotic process
near the generic singularity. The aim of this paper is the examination of the
fate of the BKL chaos at quantum level.

The evolution process presented in [1, 2] is complicated and difficult to
map into quantum evolution. There exists well defined and comparatively
simple model of the BKL scenario [3–5] that can be used in the derivation of
the BKL conjecture [6]. We call it the massive model of the BKL scenario.
The model has been obtained from the general model of the Bianchi IX
spacetime for perfect fluid under the assumption that in the dynamics, near
the singularity, the anisotropy of space grows without bound so that each
of the so-called directional scale factors oscillates, but never crosses each
other, and evolves towards vanishing, i.e., singularity. The resulting dy-
namics, specified in the next section, is different from the commonly known
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mixmaster dynamics [7, 8] consisting of infinitely many crosses among direc-
tional scale factors. The mixmaster model is the vacuum Bianchi IX model
so that it is devoid of the details of the matter model of the BKL scenario.
We have made a comparison of the dynamics of both models in [9]. The
massive model of the BKL scenario is the subject of this article.

Recently, we have found that the classical dynamics underlying the
present paper is generically unstable turning into a chaotic process near the
singularity [10]. This feature is consistent with the original BKL scenario
[1, 2].

Our quantization method, applied recently to the quantization of the
Schwarzschild spacetime [11], includes quantization of the temporal and spa-
tial variables on the same footing. The rationale for such an approach is that
the distinction between time and space variables violates the general covari-
ance of arbitrary transformations of temporal and spatial coordinates.

Quantization of the instability presented in [10] can be used in the ex-
amination of the fate of the chaos of the BKL scenario at quantum level [12].

2. Solution to the BKL scenario

To have the paper self-contained, we recall the main results of Ref. [10].
The dynamics of the massive model of the BKL scenario is defined as

follows [3, 5]:
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subject to the constraint
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where a = a(t), b = b(t), and c = c(t) are the so-called directional scale
factors, while t is a monotonic function of proper time.

It has been found in [10] that the analytical solution to Eqs. (1)–(2), for
t > t0, reads

a(t) =
3

t− t0
, b(t) =

30

(t− t0)3
, c(t) =

120

(t− t0)5
, (3)

where t− t0 ̸= 0 and t0 is an arbitrary real number.
The stability analyses carried out in [10] have shown that solution (3) is

unstable against small perturbation

a(t) = 3(t− t0)
−1 + ϵα(t) =: ã(t) + ϵα(t) , (4a)

b(t) = 30(t− t0)
−3 + ϵβ(t) =: b̃(t) + ϵβ(t) , (4b)

c(t) = 120(t− t0)
−5 + ϵγ(t) =: c̃(t) + ϵγ(t) . (4c)
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We have found [10] that the perturbation can be parameterized by five
constants defining a submanifold of R5 with non-zero measure so that it is
generic.

The relative perturbations α/a, β/b, and γ/c grow proportionally as
exp(12θ), where θ = ln(t − t0). The multiplier 1/2 plays the role of a Lya-
punov exponent, describing the rate of their divergence. Since it is positive,
the evolution of the system towards the gravitational singularity (θ → +∞)
is chaotic.

The chaos results from the strong non-linearity of the dynamics and
growing curvature of spacetime increasing effectively the non-linearity in
the evolution towards the singularity.

3. Quantization of the BKL scenario

In what follows, we quantize the BKL scenario by using the integral
quantization method called the affine coherent states quantization (see, e.g.,
[13] and references therein).

We have already quantized Hamilton’s dynamics of that scenario ig-
noring its chaotic phase: quantum singularity turns into quantum bounce
and quantum evolution is unitary across quantum bounce [14, 15]. In the
quantization of the chaotic phase of the BKL scenario, we do not quantize
Hamilton’s dynamics, but the solution to the BKL scenario, and we quantize
both temporal and spatial variables to support general covariance of general
relativity.

In the standard quantum mechanics time is not considered to be a quan-
tum observable, but a parameter enumerating events. In this paper, we
treat the time and position on the same footing at quantum level. This idea
requires introducing the notion of an extended classical configuration space
including time as an additional variable.

In what follows, we use the results of our paper [12].

3.1. Configuration space

Definition of the configuration space

T = {ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) : ξ ∈ (R×R+)× (R×R+)× (R×R+)} , (5)

where each pair (ξk, ξk+1) (where k = 1, 3, 5) defines a half-plane. It is
known that the half-plane can be identified with the affine group Aff(R).

The scale factors are denoted as follows: ξ2 = a, ξ4 = b, ξ6 = c. Because
a, b, c > 0 and ξ1, ξ3, ξ5 ∈ R, the configuration space parameterizes the
simple product of 3 affine groups Aff(R)× Aff(R)× Aff(R) =: G to be used
in quantization.
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As the observational data are parameterized by a single time parameter,
the variables {ξ1, ξ3, ξ5} should be mapped onto a single variable represent-
ing time.

3.2. Hilbert space

The direct product of three affine groups G has the unitary irreducible
representation in the following Hilbert space: H = Hx1 ⊗ Hx2 ⊗ Hx3 =
L2(R3

+, dν(x1, x2, x3)), where dν(x1, x2, x3) = dν(x1)dν(x2)dν(x3).
It enables defining in H the continuous family of affine coherent states

⟨x1, x2, x3|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩ := ⟨x1|ξ1, ξ2⟩⟨x2|ξ3, ξ4⟩⟨x3|ξ5, ξ6⟩, as follows:

H ∋ ⟨x1, x2, x3|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩ := U(ξ)Φ0(x1, x2, x3) , (6)

where U(ξ) := U(ξ1, ξ2)U(ξ3, ξ4)U(ξ5, ξ6) and |ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩ := |ξ1, ξ2⟩
|ξ3, ξ4⟩|ξ5, ξ6⟩, and where

H ∋ Φ0(x1, x2, x3) = Φ1(x1)Φ2(x2)Φ3(x3) . (7)

3.3. Quantum observables

The resolution of the identity in H can be used for mapping a classical
observable f : T → R onto an operator f̂ : H → H as follows [13]:

f̂ :=
1

Aϕ

∫
G

dµ(ξ)|ξ⟩f(ξ)⟨ξ|

=
1

AΦ1AΦ3AΦ5

∫
Aff(R)

dµ(ξ1, ξ2)

∫
Aff(R)

dµ(ξ3, ξ4)

∫
Aff(R)

dµ(ξ5, ξ6)

×|ξ1, ξ2; ξ3, ξ4; ξ5, ξ6⟩f(ξ1, ξ2; ξ3, ξ4; ξ5, ξ6)⟨ξ1, ξ2; ξ3, ξ4; ξ5, ξ6| . (8)

There exist two important characteristics of quantum observable: (i) expec-
tation value — which corresponds to classical values of measured observable,
and (ii) variance — which describes quantum smearing of observable.

3.4. Quantum dynamics

Quantum states, Ψτ (x1, x2, x3) = ⟨x1, x2, x3|Ψτ ⟩, must be elements of
the Hilbert space H. Subscript τ labels quantum states, and it should be a
one-to-one monotonic function of classical time t.
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We require the states |Ψτ ⟩ to satisfy the following conditions:

⟨Ψτ |ξ̂k|Ψτ ⟩ = t , k = 1, 3, 5 (9)
⟨Ψτ |ξ̂2|Ψτ ⟩ = a(t) , (10)
⟨Ψτ |ξ̂4|Ψτ ⟩ = b(t) , (11)
⟨Ψτ |ξ̂6|Ψτ ⟩ = c(t) . (12)

Equation (9) represents the single time constraint. Equations (9)–(12) define
the quantum equations of motion. They relate the quantum dynamics to
the classical one.

3.5. Evolving wave packets

In what follows, we use the Gaussian distribution wave packets

Ψn(x; τ, γ) = Nxn exp

[
iτx− γ2x2

2

]
, N2 =

2γn

(n− 1)!
, (13)

which are dense in L2(R+, dν(x)). Expectation values and variances of ξ̂k
and ξ̂k+1 are

⟨Ψn|ξ̂k|Ψn⟩ = τ , k = 1, 3, 5 , (14)

⟨Ψn|ξ̂k+1|Ψn⟩ =
1

AΦ

Γ
(
n− 1

2

)
(n− 1)!

γ , (15)

var
(
ξ̂k;Ψn

)
=

4n− 3

4(n− 1)
γ2 , (16)

var
(
ξ̂k+1;Ψn

)
=

1

A2
Φ

(
1

n− 1
−

Γ
(
n− 1

2

)2
(n− 1)!2

)
γ2 . (17)

In the space L2(R3
+,dν(x1, x2, x3)), we take the corresponding wave

packets

Ψn1,n3,n5(x1, x2, x3; τ1, τ3, τ5, γ1, γ3, γ5)

= Ψn1(x1; τ1, γ1)Ψn3(x2; τ3, γ3)Ψn5(x3; τ5, γ5) . (18)

To meet the properties of (9)–(12) for the wave packets Ψn1,n3,n5 , we choose
the parameters τk and γk as follows:

τ1 = τ3 = τ5 = t , (19)

γk = AΦk

(nk − 1)!

Γ
(
nk − 1

2

) fk(t) , k = 1, 3, 5 , (20)
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where

fk(t) =


ã(t) + ϵα(t) , k = 1 ,

b̃(t) + ϵβ(t) , k = 3 ,

c̃(t) + ϵγ(t) , k = 5 .

(21)

Variances in the Hilbert space H for the Gaussian wave packets read

var
(
ξ̂k;Ψn1,n3,n5

)
= Akfk(t)

2 , (22)

var
(
ξ̂k+1;Ψn1,n3,n5

)
= Bkfk(t)

2 , (23)

where

Ak = A2
Φk

(4nk − 3)(nk − 1)!(nk − 2)!

4Γ
(
nk − 1

2

)2 , (24)

Bk =
(nk − 1)!(nk − 2)!

Γ
(
nk − 1

2

)2 − 1 . (25)

These results show that all positions of our system in time and space
are smeared owing to non-zero variances. It is an important fact about
possibility of avoiding singularities in this dynamics.

4. Stochasticity of quantum BKL scenario

Having calculated the variances of quantum observables corresponding
to perturbed {a, b, c} and unperturbed {ã, b̃, c̃} solutions, we describe the
quantum instabilities as follows:

κk :=
var
(
ξ̂k;Ψpert

)
− var

(
ξ̂k;Ψunpert

)
var
(
ξ̂k;Ψunpert

) , k = 2, 4, 6 , (26)

where ξ̂2 = â, ξ̂4 = b̂, ξ̂6 = ĉ, and where Ψpert and Ψunpert denote perturbed
and unperturbed wave packets, respectively.

Making use of

f2(t)
2 = (ã(t) + ϵα(t))2= ã(t)2 + 2ϵã(t)α(t) + ϵ2α(t)2 ≃ ã(t)2 + 2ϵã(t)α(t) ,

f4(t)
2 = (b̃(t) + ϵβ(t))2= b̃(t)2 + 2ϵb̃(t)β(t) + ϵ2β(t)2 ≃ b̃(t)2 + 2ϵb̃(t)β(t) ,

f6(t)
2 = (c̃(t) + ϵγ(t))2= c̃(t)2 + 2ϵc̃(t)γ(t) + ϵ2γ(t)2 ≃ c̃(t)2 + 2ϵc̃(t)γ(t) .
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we obtain explicit form of (26), which in the 1st order in ϵ, reads

κa(t) := κ2(t) =
2ϵã(t)α(t)

ã(t)2
= 2ϵ

α(t)

ã(t)
, (27)

κb(t) := κ4(t) =
2ϵb̃(t)β(t)

b̃(t)2
= 2ϵ

β(t)

b̃(t)
, (28)

κc(t) := κ6(t) =
2ϵc̃(t)γ(t)

c̃(t)2
= 2ϵ

γ(t)

c̃(t)
. (29)

Figure 1 presents the parametric curve visualizing the relative quantum
perturbations. Higher-order approximations in ϵ would not change much
that curve.

Fig. 1. The t dependence of quantum perturbation defined by (27)–(29) for K1 =

K2 = 0.01, K3 = 0, ϕ1 = ϕ2 = 0, ϵ = 0.01. The plot presents the parametric curve
{κa(t), κb(t), κc(t)}, where t ∈ (0.01, 35).

5. Conclusions

Since our quantum and classical perturbations have quite similar time
evolutions (see, Fig. 2 of [10]), we conclude that quantization does not de-
stroy classical chaos. In fact, quantum chaos corresponds to classical chaos in
the lowest-order approximation. Non-linearity of classical dynamics creates
deterministic chaos. Non-vanishing variances of observables of the corre-
sponding quantum dynamics lead to stochastic chaos.

As calculated variances are always non-zero, the probability of obtaining
divergencies of quantum observables corresponding to classical gravitational
singularity is equal to zero, which is consistent with the results of [14, 15].

I would like to thank Piotr Goldstein, Andrzej Góźdź, and Aleksandra
Pędrak for helpful discussions.
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