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Integral quantization and time treated on the same footing as other
quantum observables are considered. They allow to construct quantum
gravity models in a more natural way because an idea of time as a quantum
observable is consistent with General Relativity, contrary to time treated
as a parameter. The projection evolution formalism is shortly presented.
A semiquantal approximation is defined.
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1. Introduction

Quantization is a kind of art that allows deriving quantum observables
from their classical counterparts. There are many quantization methods
which are to some extent equivalent, i.e., usually, they produce the same
results only for a small family of quantum systems.

Quantization can be performed either on a phase space which doubles
required physical degrees of freedom introducing pairs of canonically conju-
gated variables or on the configuration space whose dimension is equal to
the number of physical degrees of freedom.

In the standard approach to mechanics, time is not considered as a phys-
ical degree of freedom of either the classical or quantum system.

However, classical and quantum relativity strongly suggest including
time (and eventually its canonically conjugated observable the temporal mo-
mentum) as a new variable that has to be treated on the same footing as
other variables describing the physical system [1].

In the standard approach, the most popular is the canonical quantization
which maps a phase space of classical mechanics (CM) to a set of quantum
observables in quantum mechanics (QM). According to this approach, the
map denoted Θ : CM → QM should fulfill the following condition:

Θ({f, g}) = 1

iℏ
[Θ(f), Θ(g)] . (1)
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This quantization is a subject of the Groenewold theorem [2] which says
that there is no reasonable quantization map satisfying the above identity
exactly for all classical functions f, g. Another problem is the lack of a
unique ordering method of operators during the quantization process.

A more flexible method of quantization is a generalization of the canon-
ical quantization by introducing the so-called star product

f ⋆ g = f · g + (iℏ)C1(f, g) +
∞∑
n=2

(iℏ)nCn(f, g) , (2)

C1(f, g) =
1

2
{f, g} , (3)

Θ(f) ·Θ(g) = Θ(f ⋆ g) . (4)

Different choices of the ⋆-products cover a large class of quantization meth-
ods. In this case, the mapping Θ : CM → QM fulfills condition (4). The
Groenewold objection and the ordering problem are still valid. For a review,
see [3].

On the market, one can find a huge amount of very different quantization
methods such as: Green function quantization, path integrals, Wigner func-
tion quantization, algebraic quantizations, perturbatively quantized gravity,
geometrodynamical canonical quantization, the Wheeler–Dewitt equation,
the Euclidean path integral the approach of Hawking, Penrose twistor the-
ory, string theory, asymptotically safe gravity, causal dynamical triangula-
tion, emergent gravity, loop quantum gravity, etc. This is only a small part
of all quantization approaches.

In this paper, we describe a simplified version of a special quantization
technique which can be named a deformation of a quantum measure and
applied to the quantization of time or more exactly spacetime. The more
sophisticated and more universal method is based on group algebras and
GNS construction [4].

2. Integral quantization

Let us consider an overcomplete set of vectors |g⟩ = U(g)|Φ0⟩, where
U(g) is a unitary and irreducible representation of a locally compact group G
in a Hilbert space K. The so-called fiducial vector |Φ0⟩ is constructed to get
the orbit OG = {U(g)|Φ0⟩ : g ∈ G} as a dense set in K. In this case, the
vectors |g⟩ represent the non-orthogonal resolution of unity∫

G

dµ(g)|g⟩ ⟨g| = 1̂1 . (5)
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This means that the operators

M̂(Ω) :=

∫
Ω

dµ(g)|g⟩ ⟨g| (6)

form a positive operator valued measure (POVM). The special case of oper-
ators (6) is

M̂(g) = |g⟩ ⟨g| , (7)
where g ∈ G, represents the projection onto the state |g⟩.

A link between classical functions and quantum states is given by the
group G. The group G is considered as an extended configuration space of
both the classical and the corresponding quantum systems. It contains time
as a variable.

In the following, we use the notion of configuration space but the same
considerations can be done for the extended phase space (such phase space
contains time and the temporal component of linear momentum as the ad-
ditional degrees of freedom).

Because of (6), the elementary vectors |g⟩ (we call them quantum points),
where g ∈ G, can be interpreted as the quantum states corresponding to the
appropriate configuration points. According to our assumption, the space-
time parametrization is a part of the full parametrization of the group G.
It means, the scalar product ⟨g2|g1⟩ represents the transition probability
amplitude between quantum points |g1⟩ → |g2⟩.

The set of vectors OG represents the degenerate vacuum state of the
configuration space.

This interpretation requires that the quantum points |g⟩ should be a
subset of preferred states of the quantum system under consideration. They
represent the vacuum as a physical object. All other states should be “con-
structed” from these quantum points.

One sees that, because of (5), every state |Ψ⟩ can be expressed as a
generalized linear combination of the quantum points |g⟩

|Ψ⟩ =
∫
G

dµ(g)|g⟩ ⟨g|Ψ⟩ . (8)

Following the above interpretation, the function

Prob (Ω) = Tr
[
M̂(Ω)ρ

]
, (9)

where ρ is a density operator representing the state of the system, gives the
probability that our quantum system is in the region Ω of the configuration
space. In the special case of the POV operators (7), one gets the probability
of being in the point g as Prob (g) = Tr[M̂(g)ρ]. Since

∫
G dµ(g)Prob (g) = 1,

the function Prob (g) is, in fact, a density probability.
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Calculation of the expectation value of any classical function f(g) rep-
resenting classical observable with the quantum probability Prob (g) gives

⟨f⟩ =
∫
G

dµ(g)f(g)Prob (g) = Tr

∫
G

dµ(g)|g⟩f(g)⟨g|

 ρ

 , (10)

for all quantum states represented by the density operators ρ.
This suggests that the quantized version of the classical observable f(g)

should be given by the operator

f̂ :=

∫
G

dµ(g)|g⟩f(g)⟨g| . (11)

This quantization is dependent on the map between the classical configura-
tion space and its representation in quantum description [5, 6].

3. Time as a quantum observable

Quantum gravity and also quantization of gravity require time to be
considered on the same footing as other space observables, i.e., the quantum
time should be a part of the spacetime position quantum observable. A
standard approach to quantum mechanics is not appropriate in this case
because time is treated there as a parameter, not a variable. A possible
solution is the formalism of the projection evolution described in [1].

The main assumption of this formalism is the changes principle:

The evolution of a quantum system is a random process of choos-
ing the next step of the physical system caused by spontaneous
changes in the Universe.

To perform this stochastic process (evolution) of a given quantum sys-
tem, one needs to build the projection evolution operators. The projec-
tion evolution operators F| at the evolution step τn are defined as a family
of allowed transformations between quantum states, labeled by sets of the
quantum numbers ν, from the evolution step τn−1 to the evolution step τn

ρ(τn; ν
′) = F|(τn; ν ′, ρ(τn−1; ν)) , (12)

where the operator ρ(τk;µ) denotes a quantum state at the evolution step
τk labeled by a set of the quantum numbers µ.

The parameter τn is only an ordering parameter enumerating subsequent
changes in quantum states. It is a global and absolute and not measurable
parameter, i.e., it is not TIME.
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The generalized Lüders projection postulate [7] is proposed as the prin-
ciple for the evolution

ρ(τn; νn) =
F|(τn; νn, ρ(τn−1; νn−1))

Tr (F|(τn; νn, ρ(τn−1; νn−1)))
. (13)

The projection evolution is a stochastic process associated with a given prob-
ability distribution. The probability distribution for choosing a next state
is given by a quantum mechanical transition probability from the previous
to the next state, allowed by the projection postulate (13).

The procedure of choosing the next state of the considered physical sys-
tem is called the chooser.

This formalism allows to consider time as a quantum observable because
the evolution is parameterized by a formal ordering parameter τ which enu-
merates subsequent evolution steps. All required time characteristics of a
physical system at a given evolution step can be calculated in the same way
as remaining quantum observables — the scalar product in such state space
contains integration over time. The most important quantum characteristics
are expectation values of quantum observables.

According to expressions (10) and (11), the classical time is transformed
into the operator t̂. The expectation value of time in a physical system being
in the state ρ(τn; νn) obtained at the evolution step τn is

t̄n = Tr

∫
G

dµ(g)|g⟩ t ⟨g|

 ρ(τn; νn)

 . (14)

In this way, one can obtain subsequent instants t̄n characterizing evolving
system. This allows to compare expectation values of every observable at a
given t̄n and compare it with the appropriate experimental values.

4. Semiquantal approach

In the case of a quantum system, the simplest approach allowing for a
simplified type of such calculation is using the classical solutions of its equa-
tions of motion. This semiquantal approach in the extended configuration
space can be described by the following steps:

— Identifying the following set of classical spacetime observables charac-
teristic for the system under consideration:

— the spacetime positions xµ;
— the NR classical solutions of the equations of motions ξl = ϕl({xµ})

as functions of the spacetime variables, l = 1, 2, . . . , NR.
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— Quantizing the positions xµ → x̂µ and the functions ξl=ϕl({xµ}) → ξ̂l.
— Choosing a family of trial states |Ψη⟩ parameterized by a set of param-

eters η.
— Solving the following system of equations:

⟨Ψη|x̂µ|Ψη⟩ = xµ , (15)

⟨Ψη|ξ̂l|Ψη⟩ = ϕl({xµ}) (16)

to determine the required approximate states of the system, i.e., to
find a set of the parameters η.

By solving these equations, one gets the quantum states |Ψη⟩ reproducing
classical solutions of the system, in average.

Examples of such solutions are shown in [6, 8].
One needs to notice that Eqs. (15) and (16) can have either many sets

of solutions or no solutions at all. In the first case, one can construct many
evolution paths, in the second case, one needs to extend the set of trial
functions.

By choosing an evolution path |Ψη⟩, one can calculate all required quan-
tum characteristics of the system during its evolution.

The classical solutions of the required equations of motions are repro-
duced exactly as expectation values of the appropriate operators, however,
usually they are smeared quantities. A measure of this smearing is given
by their quantum variances. The nonzero variances prevent the correspond-
ing quantum observables to be singular at the points where the classical
observables have singularities.

Generally, one can see that the nonzero variances of quantum observables
can change behavior of the quantum system drastically.

5. Conclusions

The integral quantization is a nonlocal-type quantization which allows
to reproduce average values of classical observables calculated with a nearly
arbitrary probability distribution (9). This method is free from the ordering
problem. It allows to quantize nearly any kind of classical function, the
limitation is done by a convergence of integrals involved in this procedure.

The integral quantization can be applied to function spaces created on
any locally compact group. To have physical interpretation, the group mani-
fold is mapped either to configuration or phase space of the required physical
system. This quantization can be extended to much more general manifolds
having the well-defined measure.

In this paper, we are using the notion of extended configuration space as-
suming time to be the additional degree of freedom of every physical system.
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This assumption requires changes in the description of quantum evolution.
The projection evolution approach is proposed (PEv). It allows to treat time
on the same footing as remaining observables. This means that all temporal
quantum characteristics of a quantum system have to be calculated.

Mathematical construction of the quantum evolution requires introduc-
ing an ordering parameter τ which enumerates subsequent evolution steps of
the system under consideration. This parameter is only an ordering param-
eter which does not have any additional structure and is not a measurable
quantity. For every step of the evolution, the expectation value of the time
operator can be calculated. This fixes the classical time and the quantum
system state corresponding to this time. Having the state of our system
at the classical time t̄ calculation of expectation values, variances, and po-
tentially higher-order statistical moments of required quantum observables
allow to characterize our quantum system completely.

The semiquantal approach described in the last section is an approxi-
mation which allows to use a very simplified version of the PEv idea. It
reproduces classical solutions as expectation values of the corresponding ob-
servables. In fact, this describes the worst quantum scenario in which most
of the classical singularities are reproduced. However, the calculation of vari-
ances of these singular observables allows to check if the quantum system
is singular or the singularity is smeared out. The nonzero variances dimin-
ish the probability of falling into a singularity substantially — formally, the
probability of falling into the pointlike singularity is equal to zero.

It seems that this mechanism is a promising way of explaining how quan-
tum mechanics allows to avoid singularities in the quantum dynamics of
gravitational systems.

I would like to thank W. Piechocki, J. Ostrowski and A. Pędrak from
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