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The quantization of the Schwarzschild black hole by using the affine
coherent state (ACS) quantization method is presented. I introduce quan-
tization of both temporal and spatial coordinates. I propose the method of
quantum analysis of the gravitational singularity. In the presented model,
the quantum effects smear the gravitational singularity indicated by the
Kretschmann invariant avoiding its localization in the configuration space.

DOI:10.5506/APhysPolBSupp.16.6-A23

1. Introduction

The affine coherent state (ACS) quantization method is an effective quan-
tization method convenient for the construction of a quantum spherical sym-
metric gravitational model [1–3]. In such a model, the angles are not the
dynamical variables, and the configuration space sufficient to describe inter-
esting gravitational characteristics can be reduced to the form

T = {(t, r) | (t, r) ∈ R× R+} , (1)

where t is time and r is radial variable.
The quantization procedure is based on correspondence between the

points from the configuration space and quantum projection operators. The
projection operators can be interpreted as operators which are mapping from
the configuration space to the quantum space. In this paper, I present an
application of the ACS quantization method in the Schwarzchild space-time.

A very interesting feature of this quantization method is a possibility
of constructing of temporal variables. The equivalent treatment of both
the temporal and spatial variables is the basic fact underlying the whole
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relativistic physics. In the presented approach to the quantization of gravi-
tational systems, I apply this property to the quantum picture. In the ACS
quantization method, the construction of the position and time operators is
a very natural task.

Another interesting problem, which is common to gravity quantization
projects, is a quantum analysis of gravitational singularities. One expects
that a theory of quantum gravity is a fundamental theory which has to be
applied in a close neighborhood of classical singular points. Therefore, the
quantum effects are expected to be decisive in identifying the existence of a
gravitational singularity.

The presented paper is based on [4].

2. ACS quantization method

The ACS quantization method is based on the affine groups. The el-
ements of the affine group are parametrized by two parameters where the
first one is a real number and the second one is a real positive number
(p, q) ∈ R× R+. The multiplication law is taken as follows [3]:

g(p1, q1) · g(p2, q2) := g(p1 + q1p2, q1q2) ∈ Aff(R) . (2)

The left-hand side invariant measure is defined as

dµ(p, q) =
1

2π
dp

dq

q2
. (3)

According to the requirements of the quantization procedure, every point
of the configuration space must be uniquely identified with the corresponding
group element

(t, r) ↔ g(χ(t, r)) = g(p, q) , (4)

where χ(t, r) is one-to-one transformation.
As a quantum carrier space, we take the space of square integrable func-

tions on the half-line Hx = L2(R+, dν(x)), where the measure is given by
dν(x) = dx

x . To associate the carrier space and affine group, one needs to
take irreducible unitary representation of the affine group

U(p, q)Ψ(x) = eipxΨ(qx) . (5)

The next step in the quantization procedure is to choose the fiducial vector
Φ0(x) ∈ Hx. By the action of Eq. (5) on the fiducial vector Φ0(x) ∈ Hx, one
gets the so-called coherent states

⟨x|g(p, q)⟩ = U(p, q)Φ0(x) = eipxΦ0(qx) . (6)
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The fiducial vector has to be a normalized vector and the following integral
must be satisfied [3]:

⟨Φ0|Φ0⟩ =

∞∫
0

dν(x)|Φ0(x)|2 = 1 , (7)

AΦ0 :=

∞∫
0

dx

x2
|Φ0(x)|2 <∞ . (8)

The fiducial vector must be selected to provide a resolution of unity

1

AΦ0

∫
Aff(R)

dµ(p, q) |g(p, q)⟩⟨g(p, q)| = 1̂1 . (9)

The quantization procedure is based on scaling of every projection oper-
ator |g⟩⟨g| by the value of the classical observable f(g) at the point g. Next,
one needs to integrate these expressions over the full group manifold. There-
fore, mapping of the real observable f : T → R into a symmetric operator
is performed in the following way [1, 3]:

f̂ :=
1

AΦ0

∫
Aff(R)

dµ(p, q)|g(p, q)⟩f(p, q)⟨g(p, q)| . (10)

3. ACS quantization of elementary observables

Let the transformation between the configuration space and group ele-
ments have the following form:{

χ1(t, r) = p
χ2(t, r) = q

⇔
{
χ−1
1 (p, q) = t
χ−1
2 (p, q) = r

.

By using the above correspondence and ACS quantization procedure, one
can construct operators of all elementary observables

t̂ =
1

AΦ

∫
Aff(R)

dµ(p, q)|g(p, q)⟩
(
χ−1
1 (p, q)

)
⟨g(p, q)| , (11)

r̂ =
1

AΦ

∫
Aff(R)

dµ(p, q)|g(p, q)⟩
(
χ−1
2 (p, q)

)
⟨g(p, q)| . (12)

In the above constructions, the place of classical observables is taken by
functions that correspond to observables t and r.
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The freedom in choosing transformation χ causes difficulties in the inter-
pretation of coherent states [4]. To fix this interpretation, one assumes that
expectation values of the time operator t̂ within the coherent states |g(t, r)⟩
reproduce the classical time

⟨g(t, r)|t̂|g(t, r)⟩ = t . (13)

Similarly, the expectation value of the operator r̂ in the state |g(t, r)⟩ should
be equal to the classical position in the space

⟨g(t, r)|r̂|g(t, r)⟩ = r . (14)

4. Analysis of gravitational singularity

An important quantum characteristic of observables and quantum states
is the variance of this observable within such a state

var
(
Â;ψ

)
= ⟨ψ|Â2|ψ⟩ − ⟨ψ|Â|ψ⟩2 . (15)

The variance measures a spread of Â around its expectation value.
Now let us turn to the problem of quantum analysis of gravitational sin-

gularity. In the first step, one has to assume a set of classical curvature
invariants An(t, r) which characterize the gravitational model. After the
ACS quantization of these observables, one gets a set of quantum opera-
tors Ân.

The quantum gravitational singularity in the state |ψ⟩ is reached, if the
following two conditions are satisfied:

1. The expectation values of the curvature invariants operators go to
infinity in this state

⟨ψ|Ân|ψ⟩ → ∞ . (16)

2. The variances of the curvature invariants operators go to 0

var
(
Ân;ψ

)
→ 0 . (17)

The first condition provides a classical interpretation of these quantum ob-
servables in the state |ψ⟩. They coincide with the standard classical descrip-
tion. The second condition provides that the states are “localized” exactly
at the singular point and the probability of finding our system outside the
singularity is equal to 0.

The Schwarzschild black hole is one of the simplest spherical symmetric
vacuum solutions of Einstein’s equations. The form of the Schwarzchild
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metric in the so-called Schwarzschild coordinates (t, r, θ, ϕ) ∈ R×(0,∞)×S2

has the form [5, 6]

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (18)

In our considerations we take M < 0, so that it describes the naked singu-
larity.

The curvature invariant which exhibits the gravitational singularity as
r → 0 is the Kretschmann scalar

K := RαβγδRαβγδ =
48M2

r6
.

Using the affine coherent state quantization method, the Kretschmann ob-
servable reads

K̂ = 48M2 ⟨q̌⟩60
1

AΦ0

∫
Aff(R)

dµ(p, q)|g(p, q)⟩ 1
q6

⟨g(p, q)| ,

where ⟨q̌⟩0 = ⟨g(0, 1)|q̌|g(0, 1)⟩.
Since the coherent states are interpreted as the representatives of points

in configuration space, it is interesting to analyze the expectation value and
variance of the Kretschmann operator in these states

⟨g(t, r)|K̂|g(t, r)⟩ = 48M2

〈
(q−6)ˇ

〉
0

⟨q̌⟩−6
0

1

r6
, (19)

var
(
K̂; g(t, r)

)
=

(
48M2

)2 (〈((
q−6

)
ˇ
)2〉

0
−
〈(
q−6

)
ˇ
〉2
0

)
⟨q̌⟩120

1

r12
.

(20)

The first condition of quantum gravitational singularity analysis (16) is true
for the K̂ operator if r goes to 0. But in such a case, the variance of the
Krechmann operator also goes to infinity (17). The above situation indicates
that the coherent state with r close to 0 are a good candidate for being a state
for which gravitational singularity is achieved. But the effect of quantum
smearing prevents the system to be well-localized in gravitational singularity.

However, the above analysis does not give us a response to the general
question if there exists a quantum state which reaches gravitation singularity.
To answer this question, one can analyze the following set of functions:

Ψn(x) = Nxn exp

[
iτ0x− γ2x2

2

]
, N = 2γn/(n− 1)! (21)

Ψn(x) form a set of functions which is dense in the Hilbert space L2(R+, dν(x)).
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The expectation values of the operators t̂, r̂, K̂ and variance of K̂ in the
states Ψn are as follows (Fig. 1):

⟨Ψn|t̂|Ψn⟩ = τ0 , (22)

⟨Ψn|r̂|Ψn⟩ =
1

AΦ

Γ
(
n− 1

2

)
(n− 1)!

γ , (23)

⟨Ψn|K̂|Ψn⟩ = A(n+ 2)!

(n− 1)!

1

γ6
, (24)

var
(
K̂;Ψn

)
= A2

(
(n+ 5)!

(n− 1)!
− (n+ 2)!2

(n− 1)!2

)
1

γ12
, (25)

where A =
48M2⟨q̌⟩60

AΦ0

∫
R+

dq
q8

|Φ0(q)|2.
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Fig. 1. The 1/r dependence of the expectation value of the Kretschmann operator
⟨g(t, r)|K̂|g(t, r)⟩. The red area defines the points for which the distance from

the expected value is smaller than
√

var(K̂; g(t, r)) (the distance is counted along
the fixed 1/r line). The fiducial vector is taken as Φ0(x) =

1√
(2n−1)!

xn e−
x
2 with

n = 25.

The above results show that the relation between the expectation value
of observable r, t, and K, and the variance of K are the same as for the
coherent states and, therefore, we can get the same conclusions. Moreover,
it can be shown that the same relationship occurs for nondiagonal matrix
elements n ̸= m

⟨Ψn|r̂|Ψm⟩ ∼ γ , ⟨Ψn|K̂|Ψm⟩ ∼ 1

γ6
, ⟨Ψn|K̂2|Ψm⟩ ∼ 1

γ12
, (26)

where element ⟨Ψn|K̂2|Ψm⟩ is necessary for the calculation of variance (15).
It proves that the same relation occurs for any linear combination of func-
tions Ψn and, therefore, for any quantum states from the carrier space.
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One can conclude that in the ACS quantum model of the Schwarzschild
space-time, there is no such quantum state which achieves gravitational
singularity.

5. Conclusions

At the first point in the summary, it should be highlighted the simplicity
of the ACS quantization method which allows for qualitative analysis of
gravitation models in sensitive areas.

The ACS quantization method naturally leads to the operator of quan-
tum time observable which is significant in the program of quantization of
gravity and which is worth being applied to more realistic models.

Making use of the ACS quantization of the Schwarzschild spacetime, we
have found that the expectation value of the Kretschmann operator K̂ is
singular and behaves like 1/r6 as in the classical case. However, its variance
behaves like 1/r12. One can say that quantization smears the singularity,
avoiding its localization in the region of the configuration space including
the singularity.

I would like to thank A. Góźdź and W. Piechocki for helpful discussions.
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