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We discuss the time problem in quantum gravity. We illustrate the
problem with a model of gravitational waves in a quantum Friedmann uni-
verse. We propose a possible prescription for dealing with the unitarily
inequivalent quantum dynamical descriptions based on different internal
clocks. Our prescription permits unambiguous clock-independent physical
predictions.
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1. Introduction

Attempts at quantization of General Relativity notoriously suffer from
the so-called time problem [1–3]. Let us first explain the nature of the prob-
lem. The diffeomorphism invariance in the canonical formulation [4] of the
Einstein gravity leads to the Hamiltonian that is a constraint, HG ≈ 0.
Therefore, the quantization of the Hamiltonian and the imposition of the
Hamiltonian constraint on the states of the gravitational system, ĤG|Ψ⟩ =0,
leads to a “timeless dynamics”. Indeed, there is no external parameter t

called time, like in the usual Schrödinger equation Ĥ|Ψ⟩ = iℏ∂t|Ψ⟩. One
might, however, promote one of the internal degrees of freedom to the role
of “internal clock” with respect to which the quantum evolution of the
remaining variables could be followed. For instance, the quantum con-
straint equation could be given in the form of the Schrödinger equation
ĤG|Ψ(q1, . . . , qn)⟩ ≡ −iℏ∂q1 |Ψ(q1, . . . , qn)⟩+ĥG|Ψ(q1, . . . , qn)⟩ together with
the identification t := q1. This looks like a reasonable way out of the co-
nundrum. Unfortunately, one has to deal with potentially infinitely many
internal clocks and the respective quantum dynamics they describe. These
dynamics are unitarily inequivalent [5–9]. The simplest way to see it is by
realizing that the choice of internal clock t := q1 is accompanied by a re-
definition of the scalar product ⟨Ψ |Φ⟩ → ⟨Ψ |δ(q1 − t)|Φ⟩. Since different
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choices of internal clock result in different scalar products, the properties of
the states as well as of the operators will significantly differ between these
different Hilbert spaces.

In the literature, one may come across various positions in regard to
this fact. Some researchers believe that we cannot compare different inter-
nal clocks at the quantum level [10]. Others believe that the differences
between different internal clocks could be perhaps described, nevertheless,
they anyway must not be too large or quantum models of gravity would
not make any sense [11]. Still, others find the discrepancies to be in fact
very large and this is exactly where the time problem remains insufferably
unsolved.

In this contribution, we show that internal clocks can be compared at
the quantum level, or, more precisely, at the semi-classical level where the
complications of the operator analysis in the full quantum description are
avoided. Furthermore, we clearly show that the discrepancies between dif-
ferent clocks can be indeed huge contrary to the expectations of some re-
searchers. Finally, we show how unambiguous (though restricted) predic-
tions can be made with the use of any of these clocks. For the sake of
discussion, we employ an important and integrable model of perturbations
in a quantum universe, i.e., quantum gravity waves propagating across a
quantum Friedmann universe.

2. Clock transformations

The basic tool for making comparisons between internal clocks at the
quantum level are the so-called clock transformations [7, 8, 12, 13]. The ba-
sic assumption we make is that the time problem is independent of whether
first the constraint is quantized and then imposed on quantum states (Dirac’s
quantization) or first, the constraint is solved classically and then the ob-
tained reduced phase space is quantized (the reduced phase-space quanti-
zation). On the one hand, in both approaches the internal clock must be
eventually chosen and in some cases both methods can even yield identical
results. On the other hand, the reduced phase-space quantization is usually
more tractable. Therefore, in our study we use the latter.

The clock transformations are used to generate reduced phase spaces for
a given gravitational system, which is equipped with a Hamiltonian gener-
ating dynamics with respect to different internal clocks. It should be noted
that the form of the Hamiltonian can be transformed upon time-dependent
canonical transformations in the reduced phase space. However, the par-
ticular form of the Hamiltonian is not relevant in our method and thus we
shall always assume its most simple form. Now, suppose we have reduced a
gravitational system with respect to an internal clock, denoted by T , and ob-
tained the physical phase space equipped with a Hamiltonian H of a simple
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form and with a contact form ωC

ωC = dq dp− dT dH , (1)

where (q, p) is the reduced phase space and H(q, p) is the Hamiltonian
generating the dynamics in the clock T . As already mentioned, what we
are looking for is not any canonical transformation that changes the form
of the Hamiltonian H. Rather, it is a clock transformation that changes
T → T ′ = T + ∆(q, p, T ), where ∆ is called the delay function. It is a
wonderful property of integrable systems that we can find new phase-space
variables (q′, p′) such that the contact form reads

ωC = dq′ dp′ − dT ′ dH ′ , (2)

where H ′(q′, p′) = H(q′, p′), i.e., the form of the Hamiltonian remains the
same. It is a convenient property because once we solve the dynamics for q
and p in the clock T , we get for free the dynamics of q′ and p′ in the clock T ′.
There is an even more important property of this transformation which we
describe below. But first, let us find this transformation explicitly.

We have assumed above that the Hamiltonian H is clock-independent.
In other words, it is a constant of motion whose form we require to be
preserved upon the clock transformation. We find it natural to demand
the same from all constants of motion, that is, their form be preserved
under the clock transformation. For a 2n-dimensional system, we assume 2n
constants of motion denoted by HJ with H1 = H. The clock transformations
(q, p, T ) 7→ (q′, p′, T ′) are then given as follows:

T ′ = T +∆(q, p, T ) , HJ(T, q, p) = HJ(T
′, q′, p′) , J = 1, . . . , 2n .

(3)
This is a set of algebraic equations that can be solved for any valid choice
of the new clock, or equivalently, the delay function ∆(q, p, T ). Therefore,
once the choice of the clock T ′ is made, the canonical variables of the new
reduced phase space (q′, p′) are fully determined. This removes the spurious
clock transformations that differ only in the choice of new canonical variables
while introducing the same clock. But there is more to be said about the
above equations.

Upon passing to quantum theory, we promote the basic variables q and p

to respective operators Q̂ and P̂ as well as the constants of motions HJ to op-
erators ĤJ = HJ(Q̂, P̂ , T ), where a fixed operator ordering is assumed. Now,
upon a clock transformation (q, p, T ) 7→ (q′, p′, T ′) and passing to quantum
theory, one must find exactly the same operators Q̂, P̂ , and ĤJ except for
now the operators Q̂ and P̂ that correspond to new phase-space variables
(q′, p′). On the other hand, the operators ĤJ correspond to exactly the
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same constants of motion as their physical meaning does not depend on the
choice of clock. These constants of motion are, from the point of view of the
Hamiltonian constraint system that we have reduced, the Dirac observables.
And here is the big point to be made: all clocks are quantized in exactly
the same manner in the sense that they are given the same representation of
the Dirac observables. It is impossible to demand more equivalence between
different clocks at quantum level. Therefore, if one finds in quantum theory
any discrepancies between two clocks, it is because the clocks are different
but not because they were based on different quantum representations. In
other words, any ambiguities must be the effects of clock.

3. Gravity waves in a quantum universe

The canonical model for gravity waves in a flat Friedmann universe [14]

HTOT = HFRW +HGW , (4)

HFRW = p2 , HGW = −1

2

∣∣∣π± (
k⃗
)∣∣∣2 − 1

2

(
k2 − ä
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where the amplitude of the gravity wave reads h±(k⃗) = µ±(k⃗)
a . We easily

identify the constants of motion both for the background and for the per-
turbation. Applying the set of algebraic equations (3) discussed above and
choosing the delay function in the form ∆ = ∆(a, p), we find new variables
(a′, p′, µ′

±, π
′
±) and a new clock T ′.

Upon passing to quantum theory, we obtain different quantum reduced
phase spaces for different clocks. However, we may fix a reduced phase space,
say, corresponding to some initial choice of clock and make comparisons
between clocks by studying dynamical operators in this fixed reduced phase
space. Furthermore, we may make a semi-classical approximation to the
dynamics in the background phase space. In this method, we simply compare
background trajectories in a fixed reduced phase space. In the left panel
of Fig. 1, we find a semi-classical trajectory in the background reduced
phase space obtained with some initial choice of clock. We see that the
trajectory reverses close to the a = 0 singularity, which is the effect of a
semi-classical ℏ2-correction to the dynamics, and represents a universe that
first contracts, then bounces, and finally re-expands. It is the bouncing
part of the trajectory that arises due and is sensitive to the semi-classical
correction and thus, to the effect of switching between the clocks as we now
show.

In Fig. 1, we plot dynamical trajectories for a few clocks but in a unique
reduced phase space (a, p). We observe how switching between clocks may
alter the bouncing dynamics. In some clocks, the trajectories bounce ear-
lier than in others. In some clocks, the trajectories make a single bounce,
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Fig. 1. Left: a dynamical trajectory of the background geometry undergoes a
bounce from negative to positive ps generated by a semi-classical correction to the
dynamics. Right: a set of dynamical trajectories produced in different clocks and
mapped into a single reduced phase space (a, p).

while in others they make many bounces. In some clocks, the bounce is very
symmetric, whereas in others, the expanding and contracting branches differ
significantly. All these differences occur in the phase-space region where the
trajectories are driven by the semi-classical correction. Once the trajectories
move sufficiently far away from the boundary a = 0, they approach the re-
spective classical trajectory irrespectively of the employed clock. Therefore,
we can make a very important observation that the clock effect must vanish
asymptotically for large and classical universes in which semi-classical correc-
tions are negligible. Hence, despite the fact that there is not much physical
that we can say about the bounce itself except for that it happened, we
can make definite predictions about the asymptotic classical states of the
cosmological system.

In Fig. 2, we plot dynamical trajectories for a few clocks but in a unique
reduced phase space (a, hk), where hk is the amplitude of a gravity wave
for wavevector k. As in the case of the background trajectories, the present
trajectories may significantly differ close to the bounce, where the semi-
classical correction is important. Once the universe sufficiently expands,
the gravity-wave amplitudes converge for all clocks. Therefore, we confirm
our previous observation that the clock effect must vanish asymptotically for
large and classical universes in which semi-classical corrections are negligible.
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Fig. 2. Left: the gravity wave amplitude hk versus the scale factor a. Initially, for
large and decreasing a, the amplitude is small, then for small and decreasing a,
the amplitude grows and continues to grow through the bounce until it becomes
constant for large and growing a. Right: a set of dynamical trajectories produced
in different clocks and mapped into a single reduced phase space (a, hk).

4. Interpretation

Let us recapitulate all the relevant facts about clocks in quantum gravity:
(i) Upon clock transformations, quantum constants of motion are invariant,
whereas quantum dynamical variables and the evolution of their expectation
values in general vary. Hence, clocks influence the dynamical content of
quantum gravity; (ii) The expectation values of the dynamical variables
are invariant with respect to clock transformations away from the bounce
where the behavior of the expectation values becomes classical. This is
thus a phase-space region in which an unambiguous prediction for the large
universe can be made; (iii) Depending on the choice of clock and the choice of
a dynamical variable, one may postpone the convergence of the expectation
value of the latter to the respective classical trajectory until the universe is as
large as one wishes. There is no threshold in the size of the universe beyond
which the expectation values of all dynamical variables behave classically.

We note that on the one hand, we found that asymptotically for infinite
universe, the dynamical predictions of quantum gravity do not depend on
clock. This is a very strong result that we may rephrase as follows: de-
spite that the dynamical variables are not Dirac observables from the point
of view of the Hamiltonian constraint theory, they are able to provide un-
ambiguous predictions for the large universe, which is exactly what we can
observe and measure. On the other hand, for a given size of the universe
and for a given clock, only some dynamical variables exhibit classical behav-
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ior. Equivalently, for any size of the universe and for any clock, there are
dynamical variables that do not exhibit classical behavior. How to under-
stand this inconsistency? We interpret it as the usual problem with semi-
classical descriptions of systems such as the harmonic oscillator, in which
only expectation values of the simplest observables exhibit classical behav-
ior, while more complex observables diverge from classical behavior due to
ℏ2-corrections. Hence, this particular problem is not restricted to the grav-
itational systems and to the issue of time. We thus postulate to use only
these dynamical variables whose expectation values behave classically in a
clock in which predictions are made. A more detailed analysis of the above
model and a more thorough discussion of the obtained results are presented
in the forthcoming paper [14].
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