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We present a general formalism for the Hamiltonian description of per-
turbation theory around any spatially homogeneous spacetime. We employ
and refine the Dirac method for constrained systems, which is very well-
suited to cosmological perturbations. This approach includes a discussion
of the gauge-invariant dynamics of perturbations as well as an analysis of
gauge transformations, gauge-fixing, partial gauge-fixing, and spacetime
reconstruction. We will introduce the Kuchař parametrization of the kine-
matical phase space as a convenient tool for studying the gauge transforma-
tions. The key element of this approach is the reconstruction of spacetime
based on gauge-fixing conditions.
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1. Introduction

In the attempt to obtain a quantum theory suitable for the description
of the primordial structure of the Universe, we study the Hamiltonian for-
malism for cosmological perturbation theory (CPT). This work has been
done before with different background spacetime models such as the Fried-
man universe [1] and the Bianchi Type I model [2]. Our aim is to study
the complete Hamiltonian formalism in a general background focusing on
the gauge-independent description of CPT as well as the issue of gauge fix-
ing (see e.g. [3, 4] for alternative discussions on the gauge issue in CPT),
gauge transformations, and spacetime reconstruction. We employ the Dirac
method [5] to study the Hamiltonian in different gauges and reconstruct the
spacetime metric from gauge-invariant quantities (Dirac observables). We
also discuss an alternative method based on the so-called Kuchař decompo-
sition [6] which provides a parametrization of the phase space in which the
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constrains play the role of canonical variables conjugate to the gauge-fixing
conditions. For a more detailed discussion and for an application of the
presented method, see [7].

2. Cosmological perturbation theory

The Hamiltonian in the Arnowitt–Deser–Misner (ADM) formalism [8]
expanded to second order reads1

H =

∫
T3

(
N̄H(0)

0 + N̄H(2)
0 + δNµδHµ

)
d3x , (1)

where N̄ is the background lapse function and δNµ are the first-order lapse
and shift functions, with µ = 0, i and i = 1, 2, 3. The Hamiltonian densi-
ties H(0) and H(2) are, respectively, zeroth and second order, whereas δHµ

represent the first order constraints. We assume a spatially homogeneous
background spacetime with spatial coordinates defined such that the back-
ground shift vector N i vanishes as well as the background Hamiltonian H(0)

i .
The Hamiltonian in Eq. (1) is a function of the background canonical vari-
ables q̄ij and π̄ij which are respectively the three-metric and three-momenta,
and the perturbed variables defined as δqij = qij − q̄ij and δπij = πij − π̄ij .

The Hamiltonian in Eq. (1) defines a gauge for the following reasons:
First, at each spatial point, the constraints algebra is closed, i.e.

{δHi, δHj} = 0 , {δH0, δHi} = 0 , (2)

where this result is true for any homogeneous background. Furthermore, the
constraints are dynamically stables, i.e.

{H, δH0} = −δHi
,i(x) ≈ 0 , {H, δHi} = 0 , (3)

where ≈ denotes the “weak equality”, which means that the equality holds
in the constraint surface.

3. Gauge-fixing and Dirac procedure

The four constraints δHµ generate a gauge freedom which can be removed
by imposing four gauge-fixing conditions δcµ = 0. The Poisson bracket be-
tween the gauge-fixing conditions and the constraints forms an invertible
matrix det{δcµ, δHµ} ̸= 0. Applying the constraints and the gauge-fixing

1 We assume the topology of the spacetime to be M ≃ T3 ×R so as to have a spatially
compact universe and avoid ambiguous definitions of the symplectic structure for
background (homogeneous) variables.
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conditions, we can reduce our Hamiltonian which will now depend on 4 phys-
ical variables (δqphysI , δπI

phys)
2 instead of the 12 ADM perturbation3 variables

(δqij , δπ
ij). Those new variables form a canonical coordinate system on the

submanifold in the kinematical phase space. This submanifold is thus called
the physical phase space4. The parametrization provided by these physi-
cal variables is defined by the gauge-fixing surface that intersects all gauge
orbits (see Fig. 1). It is convenient to define a set of gauge-independent
variables defined as

{δDI , δHµ} ≈ 0, ∀µ , (4)

which parametrizes the space of gauge orbits in the constraints surface.
Those variables are known as Dirac observables and are equal to the number

Fig. 1. Graphical representation of the Dirac procedure.

of physical variables. There exists a one-to-one correspondence between the
Dirac observables and the physical variables, such that

δDI + ϵµI δcµ + ξµI δHµ = δOphys
I

(
δqphysI , δπI

phys

)
, (5)

where ϵµI and ξµI are background coefficients. Using this new parametriza-
tion, the Hamiltonian can be written in a gauge-independent manner as
H(2)

phys = H(2)
red + H(2)

ext, where H(2)
phys denotes the so-called physical Hamilto-

nian, H(2)
red is the reduced Hamiltonian in terms of the physical variables, and

2 The capital index I denotes the number of physical variables. In this example we
have I = 1, 2.

3 We assume the vacuum case for the sake of clarity. See [1] or [2] for the Dirac method
applied when there is matter content.

4 Its canonical structure is now given by the Dirac brackets {., .}D = {., .} −
{., δϕµ}{δϕµ, δϕν}−1{δϕν , .}, where δϕµ ∈ (δHµ, δcµ).
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H(2)
ext is the extra Hamiltonian generated by the time-dependent canonical

transformation needed to change parametrization.

4. Spacetime reconstruction

In the previous section, we discussed how to obtain the physical Hamil-
tonian. In order to reconstruct the spacetime, we still need to find the values
of the first-order lapse and shift. To do so, we use the consistency equation
{δcµ,H} = 0, which, from Eq. (1), implies

δNµ

N
= −{δcν , δHµ}−1

({
δcν , δH(0)

}
+
{
δcν ,H(2)

})
, (6)

This equation is only meaningful in the constraint surface.

5. Kuchař decomposition

We present a different parametrization of the kinematical phase space
where the constraints take the role of canonical variables. For instance, we
define two sets of canonical variables. The first set comprises the first-order
constraints δHµ and the 4 gauge-fixing functions, here denoted as δCµ. The
second pair of canonical variables is given by the Dirac observables δDI ,
defined in Eq. (4). The Hamiltonian written in this parametrization will
then be

H → HK = H+K =

∫ (
N̄H(0)

0 + N̄
(
H(2)

0 +K
)
+ δNµδHµ

)
d3x , (7)

where K is the extra Hamiltonian coming from the time-dependent para-
metrization. We notice that, since the constraints are conserved in the
constraint surface, terms of the form ∝ δCµδCν , ∝ δQIδC

µ and ∝ δPIδC
µ

are not present in Eq. (7). Moreover, considering that H(2) ≈ H(2)
red and

K(2) ≈ H(2)
ext, which tells us the two dynamics must be weakly equal, we have

that the total Hamiltonian can only be of the form

HK = N

∫ [
H(2)

phys

(
δQI , δP

I
)︸ ︷︷ ︸

physical part

+

(
λµI
1 δQI + λµ

2IδPI + λµν
3 δHν + λµ

4νδC
ν +

δNµ

N

)
Hµ︸ ︷︷ ︸

weakly vanishing part

]
d3x , (8)

where λµI
1 , λµ

I2 and λµν
3 are zeroth-order coefficients that can depend on the

gauge-fixing δCµ. The value of λµ
4ν is gauge-invariant, it is showed to be

fixed unambiguously by the algebra of the hypersurface (3).
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5.1. Gauge transformations

An interesting property of the Kuchař decomposition comes from the
freedom in the choice of the canonical variables δCµ. This means that we
have a class of parametrizations of the kinematical phase space. In particu-
lar, we can define the new set of gauge-fixing conditions as δC̃µ, and the full
gauge transformation will be given by the map G : (δHµ, δC

µ, δQI , δP
I) →

(δH̃µ, δC̃
µ, δQ̃I , δP̃

I), where δHµ = δH̃µ. We are free to assume that the
new gauge-fixing functions are thus canonically conjugate to the constraints
δHµ. Thus, we have {δHν , δC̃

µ − δCµ} = 0, which implies

δC̃µ = δCµ + αµ
I δP

I + βµIδQI + γµνδHν , (9)

where αµ
I , βµI and γµν are background parameters.

The gauge-fixing condition is only relevant in the constraints surface,
so Eq. (9) is fully determined by the parameters αµ

I and βµI . Moreover,
it means that the space of gauge-fixing conditions is the affine space of di-
mension equal to the number of Dirac observables. The introduction of a
different gauge will lead to a new Hamiltonian HK̃ , with an extra Hamilto-
nian density ∆K(2). Studying the new symplectic form of the system, we find
that γµν depends only on αµ

I and βµI , which thus are the only parameters
needed to uniquely determine the gauge transformation.

5.2. Spacetime reconstruction

As discussed in Sec. 4, the spacetime reconstruction is obtained by the
dynamical equations δĊµ = 0, which means that it is sensitive to the chosen
parametrization. In particular, in the Kuchař parametrization, we will have
{δCν ,HK}K = 05, which, from Eq. (7) becomes

δNµ

N
= −

∂
(
H(2) +K(2)

)
∂δHµ

. (10)

Notice that the above formula only depends on the weakly vanishing part
of the Hamiltonian since the lapse and shift are gauge-dependent quantities.
It is interesting to consider the difference between the lapse and shift in two
gauges. Using Eq. (8), we have

5 The Poisson brackets {., .}K are defined with respect to the Kucař variables.
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δÑµ

N

∣∣∣∣
δC̃µ=0

− δNµ

N

∣∣∣∣
δCµ=0

≈

λµ
4νβ

νI + β̇µI +
∂2H(2)

phys

∂δQI∂δP J
βµJ −

∂2H(2)
phys

∂δQI∂δQJ
αµ

J

 δQI

+

λµ
4να

ν
I + α̇µ

I −
∂2H(2)

phys

∂δP I∂δQJ
αµ

J +
∂2H(2)

phys

∂δP I∂δP J
βµJ

 δP I . (11)

We see that the spacetime reconstruction in a new gauge can be obtained
by the lapse and shift in the initial gauge plus some terms which solely de-
pend on the physical part of the Hamiltonian H(2)

phys and the gauge-invariant
coefficients λµ

4ν , which can be obtained from the algebra of the hypersurface
deformations.

6. Partial gauge-fixing

We previously discussed the gauge-fixing defined as setting the conditions
δCµ = 0. However, it can be interesting to study the case in which these 4
conditions are substituted with conditions on the lapse and shift functions.
This is what we call partial gauge-fixing. From this consideration, we can
study the transformations which preserve the lapse and shift functions, that
is, δÑµ

N

∣∣
δC̃µ=0

− δNµ

N

∣∣
δCµ=0

= 0. Using Eq. (11) and solving it for αν
I and

βµI , we can solve the ambiguity in the choice of the gauge-fixing condition

α̇µ
I = −βµJ

∂2H(2)
phys

∂δP J∂δP I
+ αµ

J

∂2H(2)
phys

∂δQJ∂δP I
− λµ

4να
ν
I ,

β̇µI = −βµJ
∂2H(2)

phys

∂δP J∂δQI
+ αµ

J

∂2H(2)
phys

∂δQJ∂δQI
− λµ

4νβ
νI . (12)

The above equations fix the gauge-fixing functions at all times once δCµ(t0)
is fixed at an initial time t0. This means that the choice of δCµ(t0) fixes
the initial three-surface. Given the initial values of the Dirac observables
(δQI(t0), δP

I(t0)), we are able to explicitly reconstruct the initial three-
surface in terms of the ADM perturbation variables. Moreover, we are able
to fully reconstruct the spacetime geometry since the evolution of the three-
surface with its coordinates is completely determined by the evolution of the
gauge-fixing function δC̃µ(t) and the independent evolution of the gauge-
invariant variables6 (δQI(t), δP

I(t)).
6 The spacetime coordinates system is independent of the evolution of this variables.
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7. Conclusions

We were able to simplify the Hamiltonian approach to CPT by showing
that it is possible to separate the gauge-independent dynamics of perturba-
tion from the issues of gauge-fixing and spacetime reconstruction. In partic-
ular we showed how the spacetime reconstruction can be pursued with the
sole knowledge of gauge-fixing conditions. Moreover, the discussed Kucař
decomposition serves as a useful and insightful tool for studying gauge-fixing
conditions and the spacetime reconstruction. The space of gauge-fixing con-
ditions and the formula for the spacetime reconstruction is given explicitly
for any gauge.

This approach might be applied to multiple conceptual problems in quan-
tum cosmology, such as the time problem, the semi-classical spacetime recon-
struction, or the relation between the kinematical and reduced phase-space
quantization. Moreover, the complete control over the gauge-fixing issue
provided by the presented method could be very useful for the problem of
gluing perturbed spacetimes to other spacetime models (e.g., ones that in-
clude non-linearities). The choice of the gluing surface and its coordinates
should be nicely described by our method.

The author acknowledges the support of the National Science Centre
(NCN), Poland under the research grant 2018/30/E/ST2/00370.
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