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We present a special case of the plane symmetric model from the G3/S2-
symmetric space-times solving the Einstein equations for a dust source
which exhibits a controlled form of the growth of finite matter density
inhomogeneities.
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1. Introduction

We consider a model whose space-time belongs to the G3/S2-symmetric
class of space-times and is plane symmetric. We assume that this space-
time solves the Einstein equations without the cosmological constant for a
dust source. This model is a planar counterpart of the Lemaître–Tolman
model which is spherically symmetric. We will consider an infinite regular
arrangement of inhomogeneities in the form of stacked planes of over- and
underdensities. We are going to determine the dependence of the temporal
evolution of the energy density contrast with regard to the specifics of the
inhomogeneities. Such a formula could be useful for the modeling of the
large-scale structure formation. There exist some formulas, which describe
the evolution of the energy density contrast for general profile of inhomo-
geneities [1, 2], but they are limited to the cases with small contrast.

2. Definition and general properties of the model

The space-time metric and the matter four-velocity of the model are
given in coordinates t ∈ R+, x, y, z ∈ R as follows:
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gmn =


−1 0 0 0
0 q2 0 0
0 0 p2 0
0 0 0 p2

 , un =


−1
0
0
0

 , (1)

where
q =

p ′

o
, ṗ2 =

n

p
+ o2 . (2)

The quantity p is a function of coordinates t and x, quantities o and n are
functions of x. The dot and prime denote the derivative with respect to the
coordinate t and x respectively.

The matter in the model is defined as a dust fluid whose flow is geodesic
and irrotational. The magnetic part of the Weyl tensor with respect to this
flow also vanishes. The basic nonzero scalar quantities in the model are

— the expansion rate

θ =

(
p2ṗ
)′

p2p ′ , (3)

— the Ricci scalar of the spatial hypersurfaces

3R = −
2
(
o2p
)′

p2p ′ , (4)

— the energy density

κρ =
n′

p2p ′ , (5)

where κ = 8πG
c4

, where c is the speed of light and G is the gravitational
constant.

The equation for the function p can be integrated parametrically to give
the solution in the form

p =
n

2o2
(cosh η − 1) ,

n

2o3
(sinh η − η) = t−m, (6)

where m is an arbitrary function of x. For practical reasons, the derivative
of the function p with respect to the coordinate x is very useful and it can
be given as [3]

p ′ =

(
n′

n
−
(
o2
)′

o2

)
p−

((
n′

n
−

3
(
o2
)′

2o2

)
(t−m) +m′

)
ṗ . (7)

The model is fully determined by the three functions of the x coordinate,
m, n, and o. However, since we have freedom to choose the x coordinate,
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effectively, we have only two free functions to restrict physical properties of
the model.

The homogeneous limit of the considered model can be achieved by the
following choice:

m′ = 0 , n =
ΩM

(1−ΩM )
3
2

o3 . (8)

Then, it is the spatially open Friedmann–Lemaître model characterized by
the energy density parameter ΩM ∈ (0, 1). When only n ∝ o3, then the
model becomes asymptotically homogeneous in the infinite future. Such
a model allows inhomogeneities only to decay. When only m′ = 0, then
the model becomes asymptotically homogeneous in the past, near the initial
singularity. Such a model allows inhomogeneities only to grow.

The inhomogeneous nature of the considered model manifests in the
asymptotic behavior of the Ricci scalar of the spatial hypersurfaces and the
energy density. The asymptotic profile of the Ricci scalar of the spatial
hypersurfaces in the past depends on the x coordinate and equals, when
m ̸= 0,

lim
t→0

3R = −
2
(
2
3

) 4
3 o2

n
2
3

(t−m)−
4
3 , (9)

and when m = 0,

lim
t→0

3R = −
2
(
2
3

) 4
3

n
2
3

(
o2 +

3n
(
o2
)′

n′

)
t−

4
3 . (10)

Similarly, the asymptotic profile of the energy density in the future depends
on the x coordinate and equals [4]

lim
t→∞

κρ =
n′

o2o′
(t−m)−3 . (11)

As it was noted in [5] in the context of the theory of cosmological perturba-
tions, decaying and growing modes of density perturbations are of different
nature since the growing mode is present only if curvature perturbations of
spatial hypersurfaces are nonzero. In evolution equations, curvature per-
turbations are the source term for the growing density perturbations mode.
Similar result holds for the hyperbolic Lemaître–Tolman model [6, 7] where,
however, density inhomogeneities do not grow unboundedly, but their con-
trast saturates to a finite value. In our model in the same manner, final
inhomogeneities in the energy density develop due to initial inhomogeneities
in the Ricci scalar of the spatial hypersurfaces.
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3. Details and specific properties of the model

We are going to construct a model which comprises only growing inho-
mogeneities, so we choose

m = 0 . (12)

This also means that the initial singularity is simultaneous in the whole
space-time. Furthermore, we want the model not to exhibit shell crossings
and to be always expanding. This could be achieved with the general as-
sumption that n, o > 0 and, in particular, we assume

o = expx . (13)

In such a model, we do not expect the structure to virialize or to collapse,
eventually. During the evolution, the energy density is decreasing every-
where, but its profile becomes frozen and stands into infinite future.

The homogeneous limit of the asymptotic profile of the energy density
in the future reads 3ΩM (1 − ΩM )−

3
2 t−3. Thus, we choose to define the

function n as a solution to the following asymptotic profile of the energy
density in the future:

lim
t→∞

κρ =
3µ

(1− µ)
3
2

t−3

(
1 + κ cos

(x
λ

)2ν)
, (14)

where, for the constant of integration, we assume that limx→−∞ n = 0. We
have introduced here four parameters κ, λ, µ, and ν which determine the
properties of inhomogeneities. The assumed asymptotic profile of the energy
density in the future has a form of an infinite regular chain of identical planar
overdensities having a cosine-like shape.

The parameter µ is restricted to µ ∈ (0, 1). When there is no inhomo-
geneities, it plays the role of the energy density parameter ΩM . It controls
the time of the structure formation, which is earlier for smaller values of
µ. The parameter κ takes values κ ∈ [0,∞). It equals to the asymptotic
value of the energy density contrast in the future. The parameter ν is con-
sidered to be a natural number, ν ∈ N+. It controls the final width of the
inhomogeneities. The parameter λ, λ ∈ R+, determines the distribution of
the inhomogeneities. For example, for λ = 10−2, the observer will count
about 10 overdensities up to the redshift of about 10. The parameter λ is a
natural small parameter in the model and thus we will consider only cases
with λ ≪ 1. In particular, for such small values of λ, the function η very
weakly depends on the x coordinate and then its formula reads

1

2
(1 + fκ)

µ

(1− µ)
3
2

(sinh η − η) = t , f =
(2ν)!

22ν(ν!)2
. (15)
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We define the energy density contrast as a contrast between a local max-
imum and minimum of the energy density

δ =
ρmax − ρmin

ρmin
. (16)

Usually, the energy density contrast is defined with respect to the averaged
density which requires the adoption of some averaging procedure. Since
there are many averaging formalisms and there is no consensus on which one
is correct [8, 9], we decided to define the energy density contrast without
referring to averaging. From this definition, we may find

δ = (1 + κ)
1 + fκg

1 + κ− (1− f)κg
− 1 , (17)

where

g = 1 + 3
1− η

2 coth
(η
2

)
sinh2

(η
2

) . (18)

We can see that the energy density contrast directly depends on the param-
eters κ and ν.

4. Summary

We have developed a simple inhomogeneous cosmological model for which
we have determined the energy density contrast using a definition that does
not require averaging. The proposed definition is suitable for describing the
contrast for evenly distributed identical inhomogeneities. According to the
obtained formula, the temporal evolution of the energy density contrast ex-
plicitly depends on the properties of the inhomogeneities, in particular, on
the asymptotic value of the energy density contrast in the future. This is
significant because the averaging-dependent approaches present in the liter-
ature (e.g. [2]) suggest that the evolution of the energy density contrast is
universal and depends on the details of the inhomogeneities only implicitly.
This result highlights the importance of inhomogeneity details in describing
the evolution of cosmological models, especially in the context of large-scale
structure formation studies and in the interpretation of cosmological data.
Along with the growth rate of inhomogeneities, the asymptotic saturation
level of their energy density contrast should be considered as the basic pa-
rameter characterizing the cosmological model.



6-A27.6 K. Głód

REFERENCES

[1] S.W. Goode, J. Wainwright, Phys. Rev. D 26, 3315 (1982).
[2] M. Kasai, Phys. Rev. D 47, 3214 (1993).
[3] A. Barnes, J. Phys. A: Math. Gen. 3, 653 (1970).
[4] C. Hellaby, A. Krasiński, Phys. Rev. D 73, 023518 (2006).
[5] S. Sikora, K. Głód, Eur. Phys. J. C 81, 208 (2021).
[6] J. Wainwright, S. Andrews, Class Quantum Grav. 26, 085017 (2009).
[7] R.A. Sussman, Class. Quantum Grav. 30, 235001 (2013).
[8] R.J. van den Hoogen, J. Math. Phys. 58, 122501 (2017).
[9] A.A. Coley, G.F.R. Ellis, Class. Quantum Grav. 37, 013001 (2020).

http://dx.doi.org/10.1103/PhysRevD.26.3315
http://dx.doi.org/10.1103/PhysRevD.47.3214
http://dx.doi.org/10.1088/0305-4470/3/6/007
http://dx.doi.org/10.1103/PhysRevD.73.023518
http://dx.doi.org/10.1140/epjc/s10052-021-08992-2
http://dx.doi.org/10.1088/0264-9381/26/8/085017
http://dx.doi.org/10.1088/0264-9381/30/23/235001
http://dx.doi.org/10.1063/1.4999065
http://dx.doi.org/10.1088/1361-6382/ab49b6

	1 Introduction
	2 Definition and general properties of the model
	3 Details and specific properties of the model
	4 Summary

