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We investigate gravitationally-induced particle production in the equiv-
alent scalar-tensor representation of f(R, T ) gravity. In this theory, the
matter energy-momentum tensor may not be conserved due to a non-mini-
mal curvature–matter coupling. As such, we explore the consequences of
such a non-conservation within the scope of particle production by using
the formalism of irreversible thermodynamics of open systems. Accord-
ingly, we obtain the expressions for the particle creation rate and for the
creation pressure. Finally, we explore the de Sitter solution with a con-
stant and non-constant matter energy density and determine the explicit
expressions for the two scalar fields and both creation rate and pressure.
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1. Introduction

General Relativity (GR) [1] has been truly remarkable in the explanation
of a plethora of observed phenomena such as gravitational lensing and grav-
itational waves. However, it is widely known that it is currently facing many
challenges. For instance, Einstein’s theory does not provide a fundamental
explanation for the cosmological constant as well as it does not explain the
true nature of dark matter — we just assume that these components are
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part of the cosmological fluid in order to explain observations. Another in-
consistency of GR in the cosmology domain is that Einstein field equations
being adiabatic and reversible are incompatible with the irreversible matter
creation processes that occur in the Universe [2]. Therefore, using GR as a
gravitational theory does not provide a clear explanation for the increase in
entropy that accompanies the irreversible production of matter within our
Universe. Thus, in the last couple of decades, a myriad of extensions of GR,
known as modified theories of gravity, were formulated in order to solve these
problems. In this paper, we consider f(R, T ) gravity [3] in its recently de-
veloped scalar-tensor representation [4]. Due to the fact that it may contain
non-minimal curvature–matter couplings, an interesting feature of f(R, T )
gravity is that the covariant divergence of the matter energy-momentum
tensor does not vanish identically. We explore the physical and cosmological
implications of this property by recurring to the formalism of irreversible
thermodynamics of open systems.

2. f(R, T ) gravity

We now present the main equations of f(R, T ) gravity theory in its
scalar-tensor representation. In the geometrical representation, the action
for f(R, T ) gravity theory is assumed to be [3]

S =
1

2κ2

∫
Ω

√
−g f(R, T )d4x+

∫
Ω

√
−gLm (gµν , Ψ) d

4x , (2.1)

where κ2 = 8πG, with G being the universal gravitational constant, Ω
denotes the 4-dimensional Lorentzian manifold on which one defines a set of
coordinates {xµ}, f(R, T ) is an arbitrary function of the Ricci scalar R and
of the trace T of the matter energy-momentum tensor Tµν . Lm is the matter
Lagrangian density that depends on the metric tensor gµν with determinant g
and on a collection of non-gravitational matter fields Ψ . The matter energy-
momentum tensor is defined in terms of the matter Lagrangian density as
Tµν = −(2/

√
−g )δ (

√
−gLm) /δg

µν . Furthermore, it is possible to construct
a dynamical equivalent action to Eq. (2.1) in terms of two extra fundamental
scalar fields [4, 5]. Such an action has the following form:

S =
1

2κ2

∫
Ω

√
−g [φR+ ψT − V (φ,ψ)] d4x+

∫
Ω

√
−gLmd

4x , (2.2)

where φ and ψ are two massless scalar fields, defined as, respectively,

φ ≡ ∂f

∂R
, ψ ≡ ∂f

∂T
, (2.3)

and V (φ,ψ) is the scalar interaction potential, defined as
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V (φ,ψ) ≡ φR+ ψT − f(R, T ) . (2.4)

By varying the action of (2.2) with respect to gµν , we obtain the following
modified field equations:

φRµν −
1

2
gµν(φR+ψT −V )+ (gµν□−∇µ∇ν)φ = κ2Tµν −ψ (Tµν +Θµν) ,

(2.5)
where ∇µ is the covariant derivative, □ = ∇α∇α is the D’Alembert operator,
and Θµν is an auxiliary tensor defined as

Θµν ≡ gαβ
δTαβ
δgµν

. (2.6)

In addition, varying the action of (2.2) with respect to φ and ψ yields,
respectively,

Vφ ≡ ∂V

∂φ
= R , Vψ ≡ ∂V

∂ψ
= T . (2.7)

Moreover, by taking the covariant divergence of Eq. (2.5), we find the con-
servation equation for f(R, T ) gravity in its scalar-tensor representation(

κ2 − ψ
)
∇µTµν = (Tµν +Θµν)∇µψ + ψ∇µΘµν

−1

2
gµν [R∇µφ+∇µ(ψT − V )] . (2.8)

By looking at Eq. (2.8), it is evident that in this theory, the matter energy-
momentum tensor Tµν is not necessarily conserved, as it is in GR. We in-
terpret this non-conservation as an exchange of energy between the non-
gravitational matter fields, represented by Tµν itself, and the gravitational
fields gµν and ψ (notice that φ only interacts with curvature). As such,
we consider that this energy exchange could potentially allow particle pro-
duction from the gravitational fields by using the formalism of irreversible
thermodynamics of open systems.

3. Irreversible thermodynamics of open systems

Irreversible thermodynamics of open systems applied to cosmology was
started in the late 1980s by Prigogine and collaborators [2]. In the early
1990s, Lima and collaborators [6] generalized this analysis by formulating
covariant thermodynamic quantities. Nowadays, this formalism has been
applied in the context of modified theories of gravity, particularly in theo-
ries with non-minimal geometry-matter couplings [7], which have a natural
thermodynamic interpretation due to the non-conservation of the matter
energy-momentum tensor [8].
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Then, let us consider the Universe as an open system of (comoving)
volume V containing N particles, with an energy density ρ and a thermo-
dynamic pressure p. In such a system, the 1st law of thermodynamics can
be written as

d(ρV ) = dQ− pdV +
h

n
d(nV ) , (3.1)

where dQ is the heat received by the system during a time dt, h = ρ+ p is
the enthalpy per unit volume, and n = N/V is the particle number density.
The 2nd law of thermodynamics in an open system has the following form:

dS = deS + diS ≥ 0 , (3.2)

where deS is the entropy flow and diS is the entropy creation. The entropy
flow is the part of entropy that measures the homogeneity of the system,
while the entropy creation is the part of entropy that is originated due to
matter creation. These quantities are given by the following expressions,
respectively:

deS =
dQ

T
, diS =

s

n
d(nV ) , (3.3)

where T is the temperature and s = S/V is the entropy density. In a
homogeneous Universe, all quantities do not depend on the position, which
makes it impossible for receiving energy in the form of heat, dQ = 0. By the
first of Eqs. (3.3), we verify that in such a Universe the entropy flow vanishes,
deS = 0. Therefore, matter creation is the only source of entropy production
in a homogeneous Universe. In this case, the 2nd law of thermodynamics
becomes

dS = diS =
s

n
d(nV ) ≥ 0 . (3.4)

Therefore, Eq. (3.4) means that it is possible to have an energy flow from
the gravitational sources that produce matter, while the inverse process is
thermodynamically forbidden.

We now explore more in-depth the 1st law of thermodynamics. By ex-
pressing the volume V in terms of the scale factor a(t), V = a3(t), and
writing time derivatives instead of differentials, under the condition of ho-
mogeneity, Eq. (3.1) can be written as (see more details in [5])

ρ̇+ 3H(ρ+ p) = (ρ+ p)Γ , (3.5)

where Γ is the particle creation rate, H = ȧ/a is the Hubble function, and
˙ denotes the time derivative. Alternatively, the 1st law of thermodynamics
can be rewritten as an effective energy conservation equation

ρ̇+ 3H (ρ+ p) = −3Hpc , (3.6)
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where pc is the creation pressure, a supplementary pressure that describes
the emergence of particles at a macroscopical scale. By comparing Eq. (3.5)
with Eq. (3.6), we can write the pc in terms of Γ

pc = −ρ+ p

3H
Γ . (3.7)

4. Thermodynamic applications of f(R, T ) gravity

In this section, we apply the thermodynamic results obtained in the pre-
vious section to scalar-tensor f(R, T ) gravity. We obtain the set of cosmo-
logical equations, the explicit form of the creation rate and pressure. Next,
we explore in detail the de Sitter solution with and without constant matter
energy density.

4.1. Cosmological equations

To study the cosmological evolution in scalar-tensor f(R, T ) gravity, we
consider a Universe described by the flat Friedmann–Lemaître–Robertson–
Walker (FLRW) metric, which in spherical coordinates (t, r, θ, ϕ) takes the
following form:

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
. (4.1)

Moreover, we assume that the matter energy-momentum tensor is described
by that of a perfect fluid, i.e.

Tµν = (ρ+ p)uµuν + pgµν , (4.2)

where uµ is the 4-velocity, which satisfies the condition uµu
µ = −1. By

assuming the matter Lagrangian density to be Lm = p [9] and recalling
Eq. (2.6), we obtain the form of Θµν

Θµν = −2Tµν + pgµν = − [2(ρ+ p)uµuν + pgµν ] . (4.3)

In addition, the Universe being homogeneous implies that ρ = ρ(t), p = p(t),
φ = φ(t), and ψ = ψ(t). With these assumptions taken into account, one
obtains two independent field equations from Eq. (2.5), in particular, the
modified Friedmann equation

3H2 = 8π
ρ

φ
+

3ψ

2φ

(
ρ− 1

3
p

)
+

1

2

V

φ
− 3H

φ̇

φ
, (4.4)

and the modified Raychaudhuri equation

2Ḣ + 3H2 = −8π
p

φ
+

ψ

2φ
(ρ− 3p) +

1

2

V

φ
− φ̈

φ
− 2H

φ̇

φ
. (4.5)



6-A28.6 M.A.S. Pinto, T. Harko, F.S.N. Lobo

Furthermore, by considering the FRLW metric, Eq. (4.1), and by taking the
trace of Eq. (4.2), Eqs. (2.7) become

Vφ = 6
(
Ḣ + 2H2

)
, Vψ = 3p− ρ . (4.6)

The conservation equation can be easily obtained by multiplying Eq. (2.8)
by uν and taking into account the normalization condition for the 4-velocity,
giving

ρ̇+3H(ρ+p) =
3

8π

{
− ψ̇
2

(
ρ− p

3
+
Vψ
3

)
− ψ

[
H(ρ+ p) +

1

2

(
ρ̇− 1

3
ṗ

)]}
.

(4.7)
By comparing Eq. (3.5) with Eq. (4.7) and introducing Eqs. (4.6), we find the
particle creation rate in the scalar-tensor representation of f(R, T ) gravity

Γ = − ψ

8π + ψ

(
d

dt
lnψ +

1

2

ρ̇− ṗ

ρ+ p

)
. (4.8)

Thus, by substituting Eq. (4.8) into Eq. (3.7), we obtain the general expres-
sion for the creation pressure

pc =
ρ+ p

3H

ψ

8π + ψ

(
d

dt
lnψ +

1

2

ρ̇− ṗ

ρ+ p

)
. (4.9)

From Eq. (4.9), we notice that pc has a strong dependence on the scalar
field ψ. Since ψ mediates the gravitational interaction, as it is one of the
three fundamental fields of scalar-tensor f(R, T ) gravity, but also plays an
active role in the particle production through pc, we conclude that it is
indeed gravitationally-induced particle production.

4.2. De Sitter solution

To explain the late-time cosmic acceleration, an essential criterion that
scalar-tensor f(R, T ) gravity must satisfy is to admit the existence of
de Sitter type solutions, which correspond to a constant Hubble function,
H = H0 = constant. We explore such solutions by firstly considering a
constant matter energy density, and then having it varying with time.
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4.2.1. Constant matter density

In order to investigate the de Sitter solution, we consider a constant
matter energy density, ρ = ρ0 = constant, and that matter consists of
pressureless dust, p = 0. To find the expression for the interaction potential
V (φ,ψ), we use the set of Eqs. (4.6), which gives

V (φ,ψ) = 12H2
0φ− ρ0ψ + Λ0 , (4.10)

where Λ0 is a constant. Furthermore, from Eq. (4.7) it is possible to obtain
an equation for the evolution of the scalar ψ

ψ̇ + 3H0ψ = 24πH0 , (4.11)

whose general solution is given by

ψ(t) = e−3H0t
[
ψ0 − 8π

(
1− e3H0t

)]
, (4.12)

where ψ0 = ψ(0). Following that, the modified Friedmann equation,
Eq. (4.4), serves as an evolution equation for the scalar φ

φ̇−H0φ =
Λ0

6H0
+

16πρ0
3H0

− e−3H0t

ρ0 (8π − ψ0)
, (4.13)

whose solution is

φ(t) =
1

12H2
0

{[
eH0t

(
12H2

0φ0 + 2Λ0 + ρ0ψ0 + 56πρ0
)

−2(Λ0 + 32πρ0)− ρ0 e
−3H0t (8π − ψ0)

]}
, (4.14)

where φ0 = φ(0). Recalling that both creation rate and creation pressure
only depend on ψ, we just need to plug Eq. (4.12) into their general expres-
sions, Eq. (4.8) and Eq. (4.9), respectively, in order to obtain the creation
rate that keeps the matter energy density constant

Γ =
3H0(ψ0 − 8π)

8π (2 e3H0t − 1) + ψ0
, (4.15)

with matter creation being macroscopically described by the corresponding
creation pressure

pc = − ρ0(ψ0 − 8π)

8π (2 e3H0t − 1) + ψ0
. (4.16)
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4.2.2. Time-varying matter density

We continue exploring the de Sitter solution considering matter as pres-
sureless dust, but now for a non-constant matter energy density. We assume
the interaction potential has a form that satisfies the first of Eqs. (4.6)

V (φ,ψ) = 12H2
0φ− 1

2β
ψ2 , (4.17)

where β is a constant. Using this expression for V (φ,ψ), the second of
Eqs. (4.6) yields

ψ = βρ . (4.18)

Therefore, by substituting Eq. (4.18) into Eq. (4.17), the potential becomes

V (φ,ψ) = 12H2
0φ− β

2
ρ2 . (4.19)

Then, it is possible to write Eq. (4.7) as a first-order non-linear differential
equation for the matter energy density ρ,(

1 +
5β

16π
ρ

)
ρ̇+ 3H0ρ = −3βH0

8π
ρ2 , (4.20)

whose general solution is

ρ (βρ+ 8π)3/2 = e−3H0(t−t0) , (4.21)

with t0 being a constant of integration. By introducing Eq. (4.19) into
Eq. (4.4), and by using the result

dφ

dt
=

dφ

dρ

dρ

dt
= −3H0ρ [1 + (β/8π) ρ]

1 + (5β/16π) ρ

dφ

dρ
, (4.22)

Eq. (4.4) becomes

9H2
0

ρ [1 + (β/8π) ρ]

1 + (5β/16π) ρ

dφ

dρ
+ 3H2

0φ+ 8πρ+
5β

4
ρ2 = 0 . (4.23)

The general solution of Eq. (4.23) has the following form:

φ(ρ) = − 1

11220βH2
0

[
55β
3
√
ρ

(
25βρ7/3 − 204c1H

2
0√

βρ+ 8π

)

−27648π5/2√
βρ
2 + 4π

2F1

(
1

3
,
1

2
;
4

3
;−βρ

8π

)
+ 13824π2 + 6400πβρ

]
, (4.24)
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where c1 is a constant and 2F1(a, b; c; z) is the hypergeometric function,
defined as

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (4.25)

with |z| < 1. Finally, the particle creation rate can be obtained as

Γ = −3ρ̇

2ρ

βρ

8π + βρ
=

9H0β

2

ρ [1 + (β/8π) ρ]

(βρ+ 8π) [1 + (5β/16π) ρ]
. (4.26)

Thus, the general solution of the modified Friedmann equations describing a
de Sitter-type expansion can be obtained in an exact parametric form, with
ρ taken as a parameter. Thus, it is possible to derive the general solution for
the generalized Friedmann equations that describe a de Sitter-type expansion
in an exact parametric form, with the matter energy density ρ being taken as
the parameter. Furthermore, we can study the evolution of ρ by considering
the limits βρ≪ 8π and βρ≫ 8π. In the first, we obtain ρ(t) ∼ e−3H0(t−t0),
and in the second, we obtain ρ(t) ∼ e−(6/5)H0(t−t0). Additionally, in the limit
βρ≫ 8π, the particle creation rate becomes a constant Γ ≈ (9/5)H0, while
in the limit βρ≫ 8π, it decreases asymptotically as an exponential function
Γ ≈ (9H0/16π)e

−3H0(t−t0).

5. Summary and conclusions

In this work, we have explored gravitationally-induced particle produc-
tion in the equivalent scalar-tensor representation of f(R, T ) gravity under
the formalism of irreversible thermodynamics of open systems. We have
considered a flat, homogeneous, and isotropic Universe, with matter being
described by a perfect fluid and with scalar-tensor f(R, T ) gravity describ-
ing the gravitational interaction. We have obtained the principal set of
cosmological equations, in particular the modified Friedmann equation, the
modified Raychaudhuri equation, the equations of the scalar interaction po-
tential, and the conservation equation. The latter was combined with the
thermodynamic conservation equation to obtain expressions for the creation
rate and pressure. We have seen that both depend on the matter energy
density, the “normal” pressure, the Hubble function, and the scalar field ψ.
Furthermore, we explored a particular cosmological model, the de Sitter solu-
tion, assuming matter in the form of dust, with a constant and time-varying
matter energy density. We have seen that scalar-tensor f(R, T ) gravity ad-
mits a de Sitter-type solution in these two situations, indicating that it can
describe the late-time cosmic acceleration without dark energy under our
assumptions. In addition, the de Sitter solution can either describe a con-
stant matter density Universe or a Universe in which the matter density
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decreases asymptotically as an exponential function. More general partic-
ular cosmological models were explored in detail in [5]. Work concerning
the cosmological tests of f(R, T ) gravity in this representation is currently
underway.
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