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The planned next generation of detectors such as Einstein Telescope,
Cosmic Explorer, and space-based detectors such as LISA are likely detect
gravitational waves signals more frequently than the current generation
LIGO detectors. With such an increased frequency of detection, we expect
some of the signals to be gravitationally lensed. An opportunity that lens-
ing opens up is to test different theories of gravity. In this work, we study
gravitational lensing in the context of Palatini f(R̂) gravity using the WKB
approximation in the geometric optics limit and beyond.
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1. Introduction

The phenomenon of bending of electromagnetic wave by massive objects
such as the Sun has been considered as one of the fundamental tests of Gen-
eral Relativity (GR). The famous eclipse expedition by A. Edington and
team in 1919 and subsequent observations have made Einstein and his the-
ory overnight famous. Predictions of GR were far ahead for the technology
available in the next few decades. However, physicists predicted the possi-
bility of massive objects to act like a geometric lens and produce multiple
images. Beyond being a spectacular view Zwicky [1, 2] realised that galax-
ies could act as natural cosmic telescopes to view faint background sources.
Refsdal’s proposal [3] to use time delay between multiple images to estimate
Hubble constant has revived interest in lensing. The advancements in tech-
nology have made it possible to observe several lensed events and now the
field of gravitational lensing has matured enough to become an unavoidable
tool in astronomy [4].
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One of the most important scientific achievements in this century is
the direct detection of gravitational waves by the LIGO Science Collabora-
tion [5]. This new window of gravitational wave astronomy opens up several
possibilities. One of them being the chances of detecting a lensed gravita-
tional signal. Like electromagnetic waves, gravitational waves can also be
lensed by the matter distribution between the source and the detector. How-
ever, unlike electromagnetic waves where we employ geometric optics limit,
GWs need to be dealt with in two different regimes: Geometric Optics (GO)
and Wave Optics (WO) limit. This is due to the larger wavelength of GW
signals (λgw ∼ 1010–10 km ), in comparison to the typical scale of electro-
magnetic waves (λem ∼ 10−8–10−2 m). For the frequency window in which
LIGO operates, one can safely apply the concepts of GO. However, for the
next generation ground-based detectors such as the Einstein Telescope(ET)
and Cosmic Explorer (CE) as well as the planned space based observatories
such as LISA and DECIGO, the WO effects become more important.

The main observational features of GW lensing are the frequency de-
pendent amplification and multiple gravitational signals [6, 7] of the same
source due to different geometric paths around the gravitational lens. The
time delay between the signals depends on the type of lens and the chance
alignment between the source and the lens. Like in the usual lensing, the
signals from far away source are amplified and hence their Signal to Noise
Ratio (SNR) is increased. Lensing of gravitational waves offers some inter-
esting applications like estimation of cosmological parameters from GW beat
pattern [8]. Another opportunity that such a lensing phenomenon opens up
is that it can be used to test modified theories of gravity. In this article,
we take f(R̂) gravity in Palatini formalism and study the propagation of
gravitational waves in the lens background. The article has been organised
as follows; In Section 2, we briefly explain the main features of Palatini
f(R̂) gravity. The predictions of GO limit and beyond GO limit have been
explained in Section 3, and we conclude with our results.

2. Palatini f(R̂) gravity

In this section, we briefly introduce the Palatini f(R̂) gravity for the
readers convenience. In the Palatini formalism, we treat the metric and the
connection to be independent quantities. Therefore, the Riemann tensor
does not depend on the metric, we denote this difference by a (̂.) over the
symbols. For example, we write the Riemann tensor as R̂µν and the Palatini
Ricci scalar as R̂ = gµνR̂µν(Γ ), where Γ is the independent connection. The
action in Palatini f(R̂) gravity can be written as

S[g, Γ, ψm] =
1

2κ

∫ √
−gf

(
R̂
)
d4x+ Sm[g, ψm] , (1)
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where Sm is the matter action which depends only on the metric and the
matter fields ψm and κ = −8πG/c4. As this action is a function of two dy-
namical variables we obtain two different equations of motion. Now varying
this action with respect to the metric gives

f ′
(
R̂
)
R̂µν − 1

2

(
R̂
)
gµν = κTµν , (2)

where f ′(R̂) = df

dR̂
, a differentiation w.r.t. the curvature and Tµν = − 2√

−g
δSm
δgµν

is the energy momentum tensor. Taking a trace of the above field equation
with the metric gµν gives a structural equation, which is an algebraic rela-
tion between the Palatini Ricci scalar and the trace of the energy momentum
tensor (T = gµνTµν)

f ′
(
R̂
)
R̂− 2f

(
R̂
)
= κT . (3)

Similarly, variation of Eq. (1) with respect to the independent connection
Γα
µν gives

∇̂β(
√
−gf ′

(
R̂(T )

)
gµν) = 0 , (4)

where ∇̂β indicates that the covariant derivative is taken with respect to
the independent connection Γ and also we assume the connection to be
symmetric. The above equation can be simplified by defining a new metric
which is conformally related, ĝµν = f ′gµν . Using this, the above equation
can be rewritten as

∇̂β

(√
−ĝĝµν

)
= 0 . (5)

Therefore, the independent connection Γ turns out to be a Levi-Civita-like
connection for the new metric ĝµν and it reduces to the Levi-Civita connec-
tion for the metric gµν if the conformal factor f ′(R̂) becomes a constant.
The metric approach to f(R) and the Palatini approach become equivalent
only in the case where f(R̂) = R, where both reduce to GR. There exists
a scalar tensor representation of field equations to Palatini f(R̂) gravity.
However, the scalar field here is non-dynamical. For more details see [9].
The field equation becomes

Ĝµν = κT̂µν − 1
2 ĝµνÛ

(
f ′
)
, (6)

where Ĝµν is the Einstein tensor written in terms of conformal variables
while T̂µν = (f ′)−1Tµν . The potential Û(f ′) carries the information on the
form of f ′ and in the case of the vanishing energy-momentum tensor trace,
U(f ′) can be neglected as it is identified with the cosmological constant.
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3. Propagation of gravitational waves in
beyond geometric optics limit

To study the propagation of gravitational waves in this theory, we need
to perturb the field equations. It is more convenient to work in the scalar
tensor representation of Palatini f(R̂) gravity which is Eq. (6) and using the
following perturbation

ĝµν =
B

ĝµν + ĥµν , (7)

where
B

ĝµν = f ′
B
gµν is the slowly varying background created by gravitational

lens and ĥµν = f ′hµν is the gravitational wave perturbation. However, for
the particular case of anisotropic-free stress, the perturbations ĥµν = hµν
[11–13]. Under this assumption, we obtain the gravitational wave equation
in curved spacetime as

∇̂α∇̂αhµν − 2R̂τ
ρµνh

ρ
τ = 0 . (8)

The propagation of gravitational waves in this lens background can be
studied by using the Wentzel–Kramers–Brillouin (WKB) approximation1

hµν = Re
{[
ξ(0)µν + ϵξ(1)µν + ϵ2ξ(2)µν + . . .

]
eiΦ/ϵ

}
, (9)

where ϵ in the above ansatz is a bookkeeping parameter to keep track on
the order of expansion, and the scalar field Φ(x) defines the phase of the
gravitational waves. The condition ϵ −→ 0 defines the geometric optics
limit. Substituting the eikonal ansatz (9) in the GW equation (8) we obtain
the following eikonal expansion:

∇̂α∇̂αhµν −2hαβR̂
α
µν

β = eiΦ/ϵ
{ 1

ϵ2

[
−k̂β k̂βξ(0)µν

]
+
1

ϵ

[
i
(
∇̂β k̂

βξ(0)µν + k̂β∇̂βξ
(0)
µν

)
− k̂β k̂βξ

(1)
µν

]
+ϵ0

[
∇̂β∇̂βξ(0)µν + i

[
∇̂β k̂

βξ(1)µν + k̂β∇̂βξ
(1)
µν

+ k̂β∇̂βξ
(1)
µν

]]}
− 2hαβR̂

α
µν

β = 0 , (10)

where the wave vector kµ is defined as the gradient of the phase function

k̂µ =
B

ĝµν∂νΦ(x) and the covariant derivative ∇̂ is defined with respect to

1 Also known as the eikonal approximation or stationary phase approximation in the
literature.
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the independent connection. Applying the eikonal ansatz (9) to the Hilbert
gauge condition ∇̂µhµν = 0, we obtain

eiΦ/ϵ
{
1

ϵ

[
ik̂µξ(0)µν

]
+

1

ϵ0

[
ik̂µξ(1)µν + ∇̂µξ(0)µν

]
+O(ϵ)

}
= 0 . (11)

3.1. Geometric optics limit

The leading order term 1
ϵ2

and the next-to-leading-order term 1
ϵ in Eq. (10)

defines the geometric optics limit of gravitational wave lensing. Analysing
these terms gives us some of the important information regarding GW prop-
agation. Starting from the leading term O(ϵ−1) in the gauge condition, we
see that the polarization tensor remains transverse to the propagation vector

k̂µξ(0)µν = 0 . (12)

The leading order term O(ϵ−2) in Eq. (10) gives the information that the
wave vector is a null vector k̂µkµ = 0 and hence it travels at the speed of
light. Taking the covariant derivative ∇̂ and making use of the fact that the
wave vector k̂µ is the gradient of the phase function gives us the following
relation

k̂µ∇̂µk̂ν = 0 . (13)

By the defining the wave vector as k̂µ = dxµ

dλ̂
we can rewrite the above

equation in a more familiar form

dxβ

dλ̂2
+ Γ̂ β

αµ

dxα

dλ̂

dxµ

dλ̂
= 0 , (14)

where λ̂ is the affine parameter in the conformal frame and Γ̂ β
αµ is the inde-

pendent connection. The above equation gives us the information that GWs
follow autoparallel curves, however using the expression for the connection
and the affine parameter in terms of the physical metric gµν , it can be shown
that they coincide with the geodesics. The next-to-leading-order (O(ϵ−1))
contribution gives

2kα∇̂αξ
(0)
µν + ∇̂αk̂

αξ(0)µν = 0 . (15)

We note that we can separate the wave tensor into the amplitude and
polarization part as ξ(0)µν = AAµν , where A is the amplitude, defined as
A =

√
ξ∗µνξ

∗µν , and Aµν is the normalized polarization tensor. Using this
decomposition in (15) along with the gauge condition we obtain two impor-
tant pieces of information regarding the amplitude and the GW polarization
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tensor. The polarization tensor Aµν is parallel propagated along the propa-
gation direction k̂µ

k̂α∇̂αAµν = 0 . (16)

The amplitude equation can be rewritten by defining the momentum of the
gravitons as P̂ = ℏk̂µ, and we obtain

∇̂µN̂
µ = 0 , (17)

where N̂µ = A2

ℏ2 P̂
µ is the graviton number density. Equation (17) implies

the conservation of graviton number density in the ray bundle. However,
both the conditions in (16) and (17) remain true only if the GW propagates
along the wave vector k̂µ instead of kµ. If the gravitational wave follows the
geodesics of GR governed by the Levi-Civita connection, they are violated.
The evolution of GW is known to depend on the background geometry which
is studied in detail in [10].

3.2. Beyond geometric optics limit

Next, we take into account the beyond geometric optics corrections to
GW propagation. The subleading term of the order O(ϵ0) in (10) and the
corresponding term in the gauge condition (11) gives, respectively,

∇̂β∇̂βξ(0)µν + i
[
∇̂β k̂

βξ(1)µν + 2k̂β∇̂βξ
(1)
µν

]
− 2ξ

(0)
αβ R̂

α
µν

β = 0 , (18)

ik̂µξ(1)µν + ∇̂µξ(0)µν = 0 . (19)

The above equation can be rewritten in a compact form by introducing
source tensors S(0)

µν = −i[2ξ(0)αβ R̂
α
µν

β−∇̂β∇̂βξ
(0)
µν ] and for the gauge condition

S
g(0)
ν = i∇̂µξ

(0)
µν . The higher order terms in the expansion are sourced by

the lower order terms
k̂µξ(1)µν = Sg(0) . (20)

Therefore, in the beyond geometric optics limit, the polarization tensor is
not transverse to the propagation vector k̂µ and

∇̂β k̂
βξ(1)µν + 2k̂β∇̂βξ

(1)
µν = S(0)

ν . (21)

The presence of the source tensor will cause the polarization tensor to be
smeared and would lead to the rise of additional polarizations. This is not
particular to the Palatini f(R̂) gravity but also reported in the beyond geo-
metric limit of GR [14, 15]. However due to the presence of a conformal factor
f ′(T ), the propagation of GW and the predictions are different from GR.
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4. Conclusion

The geometric optics and beyond geometric optics limit corrections to
the propagation of GWs in the Palatini f(R̂) gravity have been studied. In
the geometric optics limit, we see that gravitational waves follow autoparallel
curves which coincides with the geodesics. It has been shown that in the
beyond GO limit, gravitational wave polarizations are not transverse to the
propagation vector k̂µ and are sourced by lower order terms. Due to the
presence of a source term, non-tensorial polarizations are expected to arise
in the beyond GO limit which are unphysical and arise as a consequence of
lensing. It has been shown in [14] that there does not exist a preferred class of
observer which would measure only tensor polarizations, however, the vector
polarizations can be made to vanish by doing a Lorentz transformation to a
frame which is at rest with respect to the lens. A similar analysis is yet to
be carried out for the Palatini f(R̂) gravity, which will be the subject of a
future work.
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