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Persistent tensions in the ΛCDM cosmological model underline the im-
portance of tests of its basic assumptions. One such potential test arises
from the fact that the surface of zero expansion around the collapsing ob-
ject with spherical symmetry is strictly related to the object’s mass and the
value of the cosmological constant. We propose a complementary probe re-
lating the averaged zero-expansion volume to the mass and the background
cosmological Hubble parameter. Using the relativistic Zel’dovich approxi-
mation, we are able to relax the spherical symmetry assumption and hence
obtain a more general test of cosmological dynamics. Alternatively, our
method can serve as a test of compatibility of relativistic N -body simu-
lations and the scalar, averaged Einstein’s equations with the relativistic
Zel’dovich approximation serving as a closure condition.
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1. Introduction

The ΛCDM model relies on the assumption that the large-scale be-
haviour of the Universe is correctly described by the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric. As a consequence of applying this as-
sumption to observations, the stress-energy tensor of the Universe consists
mostly of dark energy and dark matter, so far undetected directly, hypo-
thetical sources. In light of accumulating tensions (see e.g. [1] for a recent
review), it is more important than ever to verify both the geometry of space-
time and the energy budget of the Universe as described by the standard
ΛCDM model. An example aiming at testing the geometrical part of this
model can be found in [8]. Regarding the stress-energy part, we can use
the dynamics and statistics of cosmological structure formation to put some
constraints on observable quantities. In particular, in [13], it was observed
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that each initially expanding and then collapsing structure is surrounded
by a zero-expansion surface, which in the ΛCDM context has its maximum
value related only to the mass and cosmological constant. This derivation
was performed assuming several simplifying assumptions, e.g. the structure
in question is spherical and homogeneous. Detection of the zero-expansion
surface around the structure, with a radius bigger than the one dictated by
the mass of the structure and the cosmological constant, would therefore
violate the ΛCDM model.

It is worth noting that the same result can be obtained by examining
the spherically symmetric but radially inhomogeneous solution to Einstein’s
equations, i.e. the Lemaître–Tolman–Bondi (LTB) metric. The LTB metric
in co-moving and synchronous coordinates reads

ds2 = −dt2 +
(R′)2

1 + 2E
+R2dΩ2 , (1)

where the prime denotes partial differentiation with respect to the radial
coordinates, E is a radial-dependent free function related to the spatial
curvature, R is the so-called areal radius, and dΩ is a surface element on
the sphere. The associated Einstein’s equations read

Ṙ2 = 2E +
2GM

R
+R2Λ

3
, 4πGρ =

M ′

R2R′ , (2)

where M = M(r) is an active gravitational mass, ρ is a density, and the dot
stands for differentiation with respect to the proper time. Taking the time
derivative of the first equation in (2) and putting R̈ = 0, we find that

R =

(
3GM

Λ

)1/3

, (3)

which is exactly the value obtained for the homogeneous model in [13]. More-
over, as it was shown in [2] (in a different context), it is a soft boundary for
the Weierstrass function (W) given by

W = 2E +
2GM

R
+R2Λ

3
, (4)

resulting from equation (2) with the Ṙ = 0 condition. Regardless of the
method by which we obtain the value from equation (3), the result is still
limited to the spherical symmetry. In the consecutive section, we will present
a formalism that will allow us to extend the applicability of this idea to
arbitrary domains by modifying the zero-expansion condition.
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2. Methods

2.1. Scalar averaging

In order to study extended objects in the relativistic context, we will
adapt the scalar averaging formalism. Spatial averaging of the scalar parts of
Einstein’s equations in the synchronous comoving coordinates was developed
by Buchert (see e.g. [5]). Given an arbitrary Lagrangian domain (co-moving
with the fluid) D containing irrotational dust, the averaged Hamiltonian
constraint reads

1

3

〈
θ2
〉
D = 8πG ⟨ρ⟩D +

〈
σ2

〉
D − 1

2
⟨R⟩D + Λ , (5)

where ⟨⟩D denotes a spatial averaging operator normalized by the domain’s
volume. The components of the extrinsic curvature tensor, the expansion
and shear scalars, are denoted by θ and σ2, respectively; ρ is the density
and R is the spatial Ricci scalar. Combined with the non-commutation rule
(for any scalar field A)

∂t⟨A⟩D − ⟨∂tA⟩D = ⟨Aθ⟩D − ⟨A⟩D⟨θ⟩D , (6)

equation (5) reads

H2
D =

8πG

3
⟨ρ⟩D −

⟨R⟩D +QD
6

+
Λ

3
, (7)

where QD denotes the backreaction and encapsulates the effects of the in-
homogeneities on the domain’s evolution in time, and HD = ȧD/aD is the
domain-dependent Hubble parameter. For irrotational dust, the backreac-
tion term is given explicitly by

QD =
2

3

〈
(θ − ⟨θ⟩D)

2
〉
D
− 2

〈
σ2

〉
D . (8)

Equation (7) describes the averaged Hamiltonian constraint on the given
domain D, which has to hold for every hyper-surface of the constant proper
time of the dust. Moreover, the domain-dependent Hubble parameter is
related to the volume of the domain

HD =
V̇D
VD

, (9)

and can be used to derive the maximum volume. Due to the presence of the
backreaction term, an additional assumption should be made to calculate a
domain-dependent scale factor aD. This will be obtained by applying the
relativistic Zel’dovich approximation in a similar fashion as in [14].
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2.2. Relativistic Zel’dovich approximation

The standard Zel’dovich approximation [16] is an extrapolation scheme
rooted in the Lagrangian perturbation theory. Zel’dovich’s original idea was
to assume a simple form of the fluid’s trajectory f , or in other words, a
simple relation between the Lagrangian (X) and Eulerian (x) coordinates

x = f(X, t) = a(t) (X + b(t)P0) , (10)

where a(t) is the background scale factor, P0 is the initial displacement
related to the initial potential P0 = ∇Φ0 and b(t) is the time-dependent
growth function. The following is an exact integral of the density field:

ρ =
ρ0
J

, J = det

(
∂f i

∂Xj

)
, (11)

where J is the Jacobian of the transformation between the Eulerian and La-
grangian coordinates. Equation (11) can be expanded around b(t)∂XP0 ≪ 1
and compared with the Eulerian density perturbation formula to obtain the
explicit form of the time-dependent function b(t). However, equation (11)
is intentionally not linearized and as such can probe the mildly non-linear
regime of the structure formation. In other words, the Zel’dovich approxi-
mation is a restricted first-order Lagrangian perturbation scheme (the initial
acceleration is parallel to the velocity, and there is no decaying mode of den-
sity perturbation), and the associated extrapolation procedure is to keep
the density field non-linear. In a similar spirit, the relativistic version of
the Zel’dovich approximation (RZA) was developed [6]. The main idea is to
express Einstein’s equations in the 3 + 1 synchronous and co-moving setup
exclusively in terms of spatial co-frames ηai, its functionals and derivatives.
This leads to (see [6] for a detailed derivation)

δabη̈
a
[iη

b
j] = 0 ,

1

2
ϵabcϵ

iklηaiη
b
kη

c
l = ΛJ − 4πGJ0ρ0 ,(

ϵabcϵ
iklη̇aiη

b
kη

c
l

)
|i
=

(
ϵabcϵ

iklη̇aiη
b
kη

c
l

)
|j
,

ϵabcϵ
mklη̇amηbkη

c
l = 16πGJ0ρ0 + 2ΛJ − JR ,

1

2

(
ϵabcϵ

iklη̈aiη
b
kη

c
l −

1

3
ϵabcϵ

mklη̈amηbkη
c
lδ

i
j

)
+

(
ϵabcϵ

iklη̇aiη̇
b
kη

c
l −

1

3
ϵabcϵ

mklη̇amη̇bkη
c
lδ

i
j

)
= −Jτ ij .

The vertical bar stands for the covariant spatial derivative, the 0 subscript
denotes the initial value, the coframe indices start with a, and coordinate
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indices start with i, J is the determinant of the transformation from the co-
ordinate to the non-coordinate basis, and τ ij is the off-diagonal spatial Ricci
tensor. The procedure is then to split the co-frames into background (e.g.
FLRW) and perturbation, linearize (12) to find the explicit solution for the
perturbed co-frames, and then evaluate all functionals (e.g. density, spatial
curvature, expansion) retaining all orders without any further truncation.
The so-obtained co-frame field reads

ηai = a(t)
(
δai + P a

i(X, t) + ξ(t)Ṗ a
i(X, t)

)
, (12)

where P a
i is a deviation field, and

ξ(t) =
q(t)− q(t0)

q̇0
, q̈ + 2

ȧ

a
q̇ +

(
3
ä

a
− Λ

)
(q + q(t0)) = 0 , (13)

with q denoting the growing mode. With this ansatz, the scalar averaged
equations become closed.

3. Results

The Jacobian of the transformation from co-frames to coordinates can
be expressed, using the relativistic Zel’dovich approximation, as

J = a2J = a3
(
1 + ξIi + ξ2IIi + ξ3IIIi

)
, (14)

where the initial invariants of the extrinsic curvature tensor θij = 1
2 ġij (with

gij denoting the spatial metric) are given by

I = tr(θij) , II =
1

2

(
(tr(θij))

2 − tr
(
(θij)

2
))

, III = det(θij) , (15)

and J is called the peculiar volume deformation. We can decompose the
domain-dependent Hubble function into the background and peculiar Hubble
flow

HD = H +
1

3

〈
J̇
〉
D

⟨J ⟩D
, (16)

and impose the condition for the turnaround to be HD = 0. This corresponds
to the maximum volume that a given object can acquire during its evolution.
Using the averaged acceleration equation

3
äD
aD

+ 4πG ⟨ρ⟩D − Λ = QD , (17)
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and the back-reaction formula

QD =

〈
J̈
〉
I

⟨J ⟩I
− ξ̈

ξ̇

〈
J̇
〉
I

⟨J ⟩I
− 2

3


〈
J̇
〉
I

⟨J ⟩I

2

, ⟨A⟩I =
1

Vi

∫
Ad3X , (18)

where Vi is the initial volume, together with the maximum volume condition,
we obtain an expression for the maximum volume attainable by cosmological
structures

Vmax =
M

ρH

(
1 + 3H

(
q̇
q

)−1
) , (19)

where ρH is the background density. Equation (19) depends on the mass of
the structure and the background parameters, and thus can be used to test
different cosmological models.

4. Conclusions

Independent cosmological tests are a necessary ingredient of the cur-
rent research aiming at solving tensions in the ΛCDM model. With the
help of relativistic Lagrangian perturbation theory and the scalar, averaged
Einstein’s equations, we derived a formula for the maximum volume of the
collapsing structure as a function of its mass and the background parame-
ters. The volume of collapsing structure can in principle be hard to measure
unless we assume some approximate spatial symmetries e.g. spherical or axis-
symmetry, however, the ongoing era of massive sky surveys will allow to map
peculiar velocities in large-scale structures to unprecedented precision and
thus make our proposed test realistically applicable.

The analysis presented in this text is based on two main pillars: the
turnaround condition given by the vanishing of the averaged scalar expan-
sion and the RZA. While RZA relies on the existence of a cosmological back-
ground and should not be applied beyond the mildly non-linear regime (rea-
sonable conditions for the large-scale structure formation), our turnaround
definition is general and can be used within other approaches, gravitational
theories or simulations. In this context, we highlight two relativistic frame-
works allowing for extension of the presented research, namely the silent
universe approach with simplified initial conditions [3] and the generalized
RZA (GRZA) [10]. The latter offers a metric-based approach and a direct
connection with RZA, LTB, and quasi-spherical Szekeres models of class I,
being suitable for generalizing our results while retaining the methodology;
the former provides a scenario for performing relativistic simulations and
using them to test our result and look for potential generalizations.
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An interesting idea, related to our analysis, is that of the finite infinity
(see e.g. [9]). The notion of spatial and null infinities plays a major role in
many branches of general relativity. However, in a realistic universe, fun-
damental observers can be either within gravitationally bound structures or
subject to the Hubble expansion. In this context, a definition of a boundary
(finite infinity) that would be far enough from the object for the metric to
be approximately flat and yet close enough not to be affected by the cosmic
expansion or other structures is required. In [15], an operational definition
was proposed by Wiltshire who required for the volume within this bound-
ary to be on average non-expanding. This is equivalent to our condition —
putting the domain-dependent Hubble parameter to zero. Exploration of
the possible connections between these two notions will be the subject of
future investigation.

J.J.O. and I.D.G. acknowledge the support of the National Science Cen-
tre, Poland (NCN) under the Sonata-15 research grant UMO-2019/35/D/
ST9/00342.
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