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The general relativistic conservative compact binary dynamics is given
through the fifth post-Newtonian (5PN) order. Through the 4PN order, the
well-established methods and results get summarized. At the 5PN order,
a recently completed computation is presented including comparisons with
the literature. Three rational numbers are still under discussion. Terms
not yet calculated at the 6PN order get pointed out.

DOI:10.5506/APhysPolBSupp.16.6-A5

1. Introduction

The post-Newtonian (PN) approximation to General Relativity (GR)
has proved very useful in applications, as well in the celestial mechanics
including binary pulsar research as in the gravitational wave astronomy.
The history of the PN approximation started in 1916 by Johannes Droste
with 1PN but showing full control of the 1PN n-body dynamics only in
1938 thanks to the works by Eddington and Clark, and by Einstein, In-
feld, and Hoffmann see, e.g. Ref. [1] for detailed history. The PN research
culminated in 2014 with the publication of the novel nonlocal-in-time 4PN
dynamics for compact binaries (particularly binary black holes) by Damour,
Jaranowski, and Schäfer [2] based on the ADM canonical formulation of GR
developed by Arnowitt, Deser, and Misner around 1960. Various confirma-
tions of that 4PN dynamics were achieved in the years 2018–2020, based
on a multipolar post-Newtonian ansatz within the Fokker-action approach
by Blanchet and collaborators [3], and the effective field theory (EFT) ap-
proach by Foffa et al. [4] and Blümlein et al. [5]. Dimensional regularization
has been applied using point particles as sources for the gravitational field
represented by Dirac delta functions in d-dimensional position space. Apart
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from the ADM approach with its canonical coordinates, all the calculations
made use of harmonic coordinates. The 5PN binary dynamics, performed
in the years 2019–2022, has been achieved for the most part by the so-called
Tutti-Frutti (TF) approach by Bini, Damour, and Geralico [6, 7], and in full
by the EFT approach by Blümlein et al. [8, 9] with both approaches being
based on bound- and scattering-state calculations. However, the complete
agreement has not yet been achieved [10], including also results from EFT
calculations by Foffa, Sturani, and Almeida [11, 12]. Results through 6PN
order are also available, mainly based on the TF approach [7, 13].

2. The applied methods

The PN-approximation approach is defined by expanding the Einstein
field equations and the equations of motion in a series of powers of 1/c2,
where the order nPN means (c: velocity of light, G: Newtonian gravitational
constant, M : total mass, r and v: typical radial separation and typical
relative velocity in binaries):

(
1
c2

)n ∼
(
GM
rc2

)l (v2

c2

)m
, n = l +m. Obviously,

the PN approach is based on the virial theorem. The fast-motion-based
post-Minkowskian (PM)-approximation approach is given as power series in
terms of Gn ∼

(
GM
rc2

)n. Hereof, by applying a slow-motion expansion, the
PN approach can be recovered.

The following methods have played crucial roles: perturbation series
(PN, PM, Multipolar, gravitational Self Force (SF)), bound- and scattering-
state calculations, point particles as Black Holes (BHs) [extended bodies
through 2PN only], dimensional regularization [throughout analytical regu-
larization sufficient through 2PN only], canonical ADM formalism through
4PN, Fokker-action formalism through 4PN, EFT approaches (in–out and
in–in), effective-one-body (EOB) theory, Delaunay averaging. From 5PN
on, the recently developed TF approach, an efficient combination of most of
the mentioned methods, has taken lead.

3. Analytical representation of binary black holes (BBHs)

3.1. Isolated BHs

In isotropic coordinates, the 3-space metric of an isolated BH reads

ds2 =

(
1 +

GM

2rc2

)4

δijdx
i dxj =

(
1 +

GM

2r′c2

)4

δijdx
′i dx′j ,

where the inversion symmetry of the Einstein–Rosen bridge at event horizon
is shown: r′r =

(
GM
2c2

)2, r′2 = x′ix′i, r2 = xixi.
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3.2. Brill–Lindquist BBH metric: a velocity zero initial-value metric

The BBH initial-value 3-metric by Brill and Lindquist (1963) reads ds2 =(
1 + 1

8ϕ
)4

dx2, ϕ = 4G
c2

(
α1
r1

+ α2
r2

)
, ra = |x− xa| ≠ 0, (a = 1, 2), where ϕ is

a homogeneous solution of ∆ϕ = 0 in punctured 3-space.
Surface integrals over the three asymptotic regions of the BBH punctured-

space solution, enclosing the throats (event horizons), result in the sin-
gle proper masses ma as well as in the total mass (sum of proper masses
plus binding mass–energy) in the form of the total Hamiltonian HBL =
(α1 + α2)c

2.

3.2.1. Spatial metric in d-dimensional space

Leaving punctured space for introducing matter sources, the application
of d-dimensional space is necessary. The metric then reads

gij =

(
1 +

d− 2

4(d− 1)
ϕ

) 4
d−2

δij ,

ϕ =
4πG(d)

c2
Γ
(
d−2
2

)
π

d
2

(
α1

rd−2
1

+
α2

rd−2
2

)
.

3.2.2. Point masses as sources for d-dimensional metric

The potential function ϕ results from d-dimensional delta-functions as
sources

δ(d) = −Γ ((d− 2)/2)

4πd/2
∆(d) 1

rd−2
.

The formal positions of the point masses ma are located in Euclidean d-coor-
dinates space with metric δij , obtained via conformal transformation of the
d-metric gij , with densities maδ

(d)
a = maδ

(d)(x − xa),
∫
maδ

(d)
a ddx = ma.

Notice that the support of the delta functions is not where the singularities
of the true sources are located. It is rather like the virtual image charges
in the electrostatics which are located outside the physical domain. The
Hamiltonian-constraint part of the Einstein field equations reads

−
(
1 +

d− 2

4(d− 1)
ϕ

)
∆ϕ =

16πG(d)

c2

∑
a

maδ
(d)
a .

This equation is well defined if 1 < d < 2 holds, allowing for dimensional
regularization in the form of (b ̸= a),(

1 +
G(d)(d− 2)Γ ((d− 2)/2)

c2(d− 1)π(d−2)/2

αb

rd−2
ab

)
αaδ

(d)
a = maδ

(d)
a .
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4. Conservative BBH dynamics through 4PN

4.1. Near-zone and tail-field results

Using dimensional regularization for ultraviolet divergencies and ana-
lytical regularization for infrared ones, the near-zone conservative Hamilto-
nian and the time-symmetric, nonlocal-in-time, part one from backscattered
waves in the far zone read, respectively, with Q

(3)
ij denoting the third time

derivative of the mass-quadrupole tensor,

H
near-zone (s)
4PN [xa,pa] = H loc 0

4PN [xa,pa] +
2

5

G2M

c8

(
Q

(3)
ij

)2
ln

(
r12
snz

)
,

H
tail,sym (s)
4PN (t) = −1

5

G2M

c8
Q

(3)
ij (t)

+∞∫
−∞

dv ln

(
|v|c
2sfz

)
Q

(4)
ij (t− v) .

Matching SF-results for the perturbed Schwarzschild metric from particle in
circular motion yields the connection between the analytical regularization
scales snz and sfz in the form of ln (sfz/snz) = −1681

1536 , [2], being consis-
tent with

Htail,nloc
4PN = −GM

c3
Pf2r12/c

∞∫
−∞

dτ

|τ |
F split
N (t, t+ τ) , (dim. reg. throughout) ,

F split
N

(
t, t′
)
=

G

c5
1

5
Q

(3)
ij (t)Q

(3)
ij

(
t′
)
,

Htail,loc
4PN = −GM

c3
41

30
F split
N (t, t) [11] .

The rational number 41
30 corresponds to 5

6 which is a famous number in the
Lamb-shift formula, cf., [14].

4.2. The EOB formalism

The EOB-formalism is a most efficient Hamiltonian tool to compile and
compare results from various approaches. It is constructed as a PN-series of
a binary Hamiltonian in its center-of-mass frame

H = m1c
2 +m2c

2 +HN +

5∑
n=1

(
1

c2

)n

HnPN .
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The following notions will be used in the following: HNR = H − Mc2,
M = m1 + m2, µ = m1m2/M , ν = µ/M , 0 ≤ ν ≤ 1/4, test-body case:
ν = 0, equal-mass case: ν = 1/4, in center-of-mass frame: p1 + p2 = 0,
p ≡ p1/µ, pr = (n · p), q ≡ (x1 − x2)/GM , n = q/|q|, t̂ = t/GM .

The effective Hamiltonian Heff is defined by

Heff

µc2
≡ H2 −m2

1c
4 −m2

2c
4

2m1m2c4
= 1 +

HNR

µc2
+

ν

2

(
HNR

µc2

)2

,

resulting in the useful representation of H,

H = Mc2
√
1 + 2ν

(
Ĥeff − 1

)
, Ĥeff =

Heff

µc2
.

The EOB representation makes use of the generalized Schwarzschild metric

gµνeffPµPν +Q4(Pi) = −µ2c2 , HEOB
eff ≡ −P0c ,

HEOB
eff = Neffc

√
µ2c2 + γijeffPiPj +Q4(Pi) .

A canonical transformation connects the primary effective Hamiltonian with
the effective EOB Hamiltonian

HEOB
eff (X,P ) = Heff(x, p) , HEOB = Mc2

√
1 + 2ν

(
ĤEOB

eff − 1
)
,

(X,P ) → (x, p) : ĤEOB
eff =

√
A (1 +ADη2p2r + η2 (p2−p2r) +Q) , (η = 1/c) .

4.2.1. Conservative BBH local-in-time dynamics through 4PN

PN expansions of the functions A(u), D(u), and Q(u, pr) yield

A = 1 +

6∑
k=1

ak(ν)η
2kuk , D = 1 +

5∑
k=2

dk(ν)η
2kuk ,

Q = η4p4r
[
q42(ν)η

4u2 + q43(ν)η
6u3 + q44(ν)η

8u4
]

+η6p6r
[
q62(ν)η

4u2 + q63(ν)η
6u3
]
+ η12p8rq82(ν)u

2 , u = GM/rc2 .

At Newtonian level: a1 = −2; at 1PN: a2 = 0; at 2PN: d2 = 6ν, a3 = 2ν;
at 3PN: q42 = 8ν − 6ν2, d3 = 52ν − 6ν2, a4 =

(
94
3 − 41

32π
2
)
ν; at 4PN: q62 =

−9
5ν−

27
5 ν

2+6ν3, q43 = 20ν−83ν2+10ν3, d4 =
(
1679
9 − 23761

1536 π
2
)
ν+(−260+

123
16 π

2)ν2, a5 =
(
−4237

60 + 2275
512 π

2
)
ν +

(
−221

6 + 41
32π

2
)
ν2.
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5. The BBH local-in-time dynamics at 5PN

The TF approach yields [6, 7]

q82 =
6

7
ν +

18

7
ν2 +

24

7
ν3 − 6ν4 ,

q63 =
123

10
ν − 69

5
ν2 + 116ν3 − 14ν4 ,

q44 =

(
1580641

3150
− 93031

1536
π2

)
ν +

(
−9367

15
+

31633

512
π2

)
ν2

+

(
640− 615

32
π2

)
ν3 ,

d5 =

(
331054

175
− 63707

512
π2

)
ν + dν

2

5 +

(
1069

3
− 205

16
π2

)
ν3 ,

a6 =

(
−1026301

1575
+

246367

3072
π2

)
ν + aν

2

6 + 4ν3 ,

The EFT approach [8, 9], results in, notice right below qν
2ratBMMS

44 ̸= qν
2ratTF

44 ,

dπ
2ν2

5 =
306545

512
π2ν2 , aπ

2ν2

6 =
25911

256
π2ν2 ,

dν
2

5 =

(
−10442728

1575
+

306545

512
π2

)
ν2 ,

aν
2

6 =

(
−584881

525
+

25911

256
π2

)
ν2 ,

q44 =

(
1580641

3150
− 93031

1536
π2

)
ν +

(
−1252924

1575
+

31633

512
π2

)
ν2

+

(
640− 615

32
π2

)
ν3 ,

In [10], TF is confirming BMMS, [8, 9], in part, also comparing with FS and
AFS, [11, 12]

Htail,nloc
5PN = −

G
(
E/c2

)
c3

Pf2r12/c

∞∫
−∞

dτ

|τ |
F split
1PN (t, t+ τ) ,

F split
1PN

(
t, t′
)
=

G

c5
1

c2

(
1

189
O

(4)
ijk(t)O

(4)
ijk

(
t′
)
+

16

45
J
(3)
ij (t)J

(3)
ij

(
t′
))

,

Htail,loc
5PN = −

G
(
E/c2

)
c3

(
Roct,eF split,MO2

1PN (t, t) +Rquad,mF split,MJ2

1PN (t, t)
)
,
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RTF
oct,e = RFS

oct,e = RBMMS
oct,e =

82

35
,

RTF
quad,m = RAFS

quad,m = RBMMS
quad,m =

147

60
.

The current-type quadrupole Jij enters in [10] in the most delicate form
1

2
R0iabϵabjJij , Jij = Jji .

Its d-dimensional generalization goes via the avatar Ji|ab

ϵabjJij ≡ Jb|ia , Ji|ab = −Jb|ai , Ji|ab + Ja|bi + Jb|ia = 0 ,

J
(3)
ij J

(3)
ij → 1

2
J
(3)
i|abJ

(3)
i|ab ,

Ji|ab = ν(m2 −m1)

[(
xixa − x · x

d− 1
δia
)
vb

−
(
xaxb − x · x

d− 1
δab
)
vi −

x · v
d− 1

(
xiδab − xbδia

)]
.

The following relations have been derived in [10], using Roct,e and Rquad,m

aν
2

6 =
25911

256
π2ν2 + ν2Ra6(CQQL, CQQQ1 , CQQQ2) , Ra6 = rat.number ,

dν
2

5 =
306545

512
π2ν2 + ν2Rd5(CQQL, CQQQ1 , CQQQ2) , Rd5 = rat. number ,

where Ra6 and Rd5 are given functions of the constants C defined by actions

SQQL = CQQLG
2

∫
dtQ

(4)
il Q

(3)
jl ϵijkLk ,

SQQQ1 = CQQQ1G
2

∫
dtQ

(4)
il Q

(4)
jl Qij ,

SQQQ2 = CQQQ2G
2

∫
dtQ

(3)
il Q

(3)
jl Q

(2)
ij ,

with values all having been calculated in [9] and [11] using in–in (or, closed-
time) and in–out formalisms, respectively

CFS
QQL = − 8

15
= CBMMS

QQL ,

CFS,mem
QQQ1

= − 1

15
=

4

3
CBMMS,mem
QQQ1

,

CBMMS,cont
QQQ1

=
1

8
,

CFS,mem
QQQ2

= − 4

105
=

4

3
CBMMS,mem
QQQ2

.

The abbreviations “mem” and “cont” denote memory and contact terms,
respectively.
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In [10], the following constraint equation is obtained from the condition
on scattering-angles χcons,EFT

4 − χcons,TF
4 = 0 of conservative local-in-time

dynamics:

0 =
2973

350
− 69

2
CQQL +

253

18
CQQQ1 +

85

9
CQQQ2

depending on q44. That condition gets fulfilled by neither the values from FS
nor those from BMMS. Also in [10], a possibly missing conservative quadratic
radiation-reaction (anti-symmetric)2 term gets mentioned which could lead
to the following change of the Hamiltonian [9], δH(reac)2

rad = a(η5)2ν2 p
4
r

r4
, with

a = −168
5 : inferring qBMMS

44 → qTF
44 .

6. Beyond 5PN

The TF-approach succeeded with 6PN to some extent [13]

Htail2,nloc
5.5PN = −107

210

G2
(
E/c2

)2
c6

∞∫
−∞

dτ

τ

[
Gsplit(t, t+τ)− Gsplit(t, t−τ)

]
[7] ,

Gsplit
(
t, t′
)
=

G

c5
1

5
Q

(3)
ij (t)Q

(4)
ij

(
t′
)
,

Htail,nloc
6PN = −G(E/c2)

c3
Pf2r12/c

∞∫
−∞

dτ

|τ |
F split
2PN (t, t+ τ) ,

F split
2PN

(
t, t′
)
=

G

c5
1

c4

(
1

9072
I
(5)
ijkl(t)I

(5)
ijkl

(
t′
)
+

1

84
J
(4)
ijk(t)J

(4)
ijk

(
t′
))

.

Not yet confirmed (at 5PN) or calculated (at 6PN) EOB numerical constants
are: 3 rational numbers at 5PN (BMMS): aν

2,rat
6 , dν

2,rat
5 , qν

2,rat
44 , 8 rational

plus nonrational numbers at 6PN (TF): aν37 , aν27 , dν26 , qν245 .
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