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The compactness of a relativistic compact star provides an essential
clue to the matter composition of the star. In this paper, we explore many
versions of the Tolman VII solution to analyse the maximum compactness
of a relativistic star in the context of a given equation of state (EOS). For
an EOS specified by the model parameters in the Tolman VII solution,
we evaluate the critical bound on compactness above which the stellar
composition becomes unstable against radial oscillations. We also outline
the possible link between stellar stability, ‘complexity’, and ‘cracking’ of an
anisotropic stellar configuration.
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1. Introduction

In astronomy and astrophysics, the ‘compactness’ of a star plays a crucial
role in the theoretical modelling of the star. Some stars are so compact that
a relativistic treatment is required to describe them. For a self-gravitating
compact relativistic star, if the equation of state (EOS) is known, one can
obtain the mass–radius (M–R) relationship by integrating the Tolman–
Oppenheimer–Volkoff (TOV) equations. Alternatively, the mass and radius
of a compact star provide an important clue to its composition. The cur-
rent era of multi-messenger astronomy facilitates a more accurate estimation
of stellar observables such as mass M and radius R, which is expected to
constrain the neutron star EOS. In GR, the maximum compactness is pro-
vided by the Buchdahl bound, which implies M/R < 4/9 [1]. The bound
changes when the electromagnetic field is incorporated into the system. In
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the presence of a charge, the gravitational attraction is counterbalanced by
the Coulomb repulsion which prevents the object from collapsing to a point
singularity. Sharma et al. [2] superimposed the electromagnetic field on
uniform density fluid distribution and generated new exact solutions for a
static spherically-symmetric charged stellar composition which reduced to a
uniform density Schwarzschild solution when the electric field was switched
off. Subsequently, they obtained a charged analogue of the Buchdahl bound
which has the form

u =
M

R
=

8/9(
1 +

√
1− 8α2

9

) , (1.1)

where α2 = Q2/M2 and Q = q(R) is the total charge. The above result
also provides an upper bound on α2 ≤ 9/8 and u ≤ 8/9 < 1. For α2 = 0,
one regains the original Buchdahl bound u ≤ 4/9. Earlier, by adopting
a different technique, Giuliani and Rothman [4] obtained the same result.
Sharma et al. [3] also examined the impact of local pressure anisotropy on
the maximum compactness of a relativistic star. By demanding that the
central pressure must remain finite, their calculation yielded the following
bound:

2M

R
≤ 4(k − 2)

(5k − 9)
, (1.2)

where k is the measure of anisotropy. It is to be stressed here that k is a
curvature parameter in the Vaidya–Tikekar stellar model [5], which has a
clear geometric interpretation and can be associated with the star’s matter
composition (EOS). The spacetime metric developed in the Vaidya–Tikekar
stellar model is motivated by a geometric property that t = constant hyper-
surface of the associated spacetime, when embedded in a 4-Euclidean space
is not spherical but spheroidal and the parameter k indicates the departure
from the sphericity of associated 3-space.

The Tolman VII solution [6] is yet another exact solution of the Einstein
field equations that can describe the structure and properties of compact
objects like neutron stars. In our work, making use of the Tolman VII
solution, we intend to analyse the impact of EOS on the compactness of a
star.

2. Different versions of the Tolman VII solution

It is noteworthy that many versions of the Tolman VII solution are avail-
able in the literature. We begin by choosing a line element describing the
interior of a static, spherically-symmetric star in the standard form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (2.1)
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The matter distribution inside the star is assumed to be a perfect fluid
described by the energy-momentum tensor

Tµν = (ρ+ p)uµuν + pgµν , (2.2)

where ρ is the energy density of the fluid, p the isotropic pressure, and uµ is
the 4-velocity of the fluid. For the above, the Einstein field equations read as

d

dr

(
e−λ − 1

r2

)
+

d

dr

(
e−λν ′

2r

)
+ e(−λ−ν) d

dr

(
eνν ′

2r

)
= 0 , (2.3)

e−λ

(
ν ′

r
+

1

r2

)
− 1

r2
= 8πp , (2.4)

dm(r)

dr
= 4πr2ρ , (2.5)

where a prime (′) denotes derivative with respect to radial coordinate r. The
mass function m(r) is defined as

e−λ ≡ 1− 2m

r
. (2.6)

In the above and hereafter, we set G = 1 and c = 1. To integrate the system
(2.3)–(2.5), Tolman introduced the following ansatz

e−λ(r) = 1− uζ2
(
5− 3ζ2

)
, (2.7)

where ζ = r
R . This particular choice of the metric potential is equivalent to

choosing an energy-density distribution inside the star as

ρ(r) = ρc
(
1− ζ2

)
, (2.8)

where
ρc =

15M

8πR3
, (2.9)

is the central energy density. By integrating the field equations, one obtains
the other unknown metric potential as

eν(r) = c1cos
2ϕ , (2.10)

with

ϕ = c2 −
1

2
log

(
ζ2 − 5

6
+

√
e−λ

3u

)
, (2.11)
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where c1 and c2 are integration constants determined from the boundary
conditions (continuity of metric functions across the boundary and vanish-
ing of pressure at the boundary). Subsequently, the isotropic pressure is
obtained in the form

p =
1

4πR2

[√
3u e−λtanϕ− u

2

(
5− 3ζ2

)]
. (2.12)

Thus, the Tolman VII solution is a two-parameter [M , ρc] family of solutions.
For a more realistic description of neutron stars, Raghoonundun and

Hobill [7] considered a more generalized form of the density profile

ρ̃(r) = ρc

[
1− µ

( r

R

)2]
, (2.13)

where µ[0, 1] is a free parameter representing the ‘stiffness’ of the EOS of
the star [8] which can vary between 0 ≤ µ ≤ 1. In the extreme case of µ = 0,
one obtains an incompressible fluid sphere model, and µ = 1 corresponds to
the original Tolman VII solution.

With the above energy density profile, the system of equations may be
integrated to yield

eλ̃ =
1

1−
(
8πρc
3

)
r2 +

(
8πµρc
5R2

)
r4

=
1

1− br2 + ar4
, (2.14)

e
ν̃(r)
2 = c̃1 cos

(
ϕ̃ξ(r)

)
+ c̃2 sin

(
ϕ̃ξ(r)

)
, (2.15)

where ϕ̃ =
√

a
4 , ρc = 15M

4πR3(5−3µ)
, and ξ(r) = 2√

a
coth−1(1+

√
1−br2+ar4

r2
√
a

). One
thus obtains a three-parameter [M , ρc, µ] family of solutions where µ can
be fixed to suit a particular EOS.

Jiang and Yagi [9] have proposed an improved version of the Tolman VII
solution which is also a three-parameter [M , ρv, α] family of solutions. The
motivation for the improved Tolman VII solution was to ensure a better
agreement of the energy-density profile with the realistic neutron star EOS.
In this approach, the energy density is assumed to be of the form

ρim(r) = ρc
[
1− αζ2 + (α− 1)ζ4

]
, (2.16)

where α[0, 2] is a free parameter. The original Tolman VII solution has
α = 1. With this assumption, the metric potentials are obtained as

e−λim = 1− 8πR2ζ2ρc

(
1

3
− α

5
ζ2 +

α− 1

7
ζ4
)

, (2.17)

eν = cim1 cos2 ϕim , (2.18)
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with

ϕim = cim2 − 1

2
log

(
ζ2 − 5

6
+

√
5e−λTol

8πR2ρc

)
. (2.19)

The advantages of these generalized versions of the Tolman VII solution are
the following:

(i) The parameter µ is a measure of ‘stiffness’ of the associated EOS;
(ii) The parameter α can be linked to the EOS of the matter composition.

In other words, µ and α can be suitably chosen so as to describe a particular
EOS. In our paper, we will examine the effects of these parameters on the
stability of the configuration, which can subsequently provide us with an
upper bound on compactness.

3. Stability: Chandrasekhar’s technique

Chandrasekhar [10], in 1964, proposed a technique to analyse the stability
of a star against radial oscillations. Following the technique, Bardeen et al. [11]
presented a variety of methods to examine the stability of a star numerically.
The technique is summarized below.

Let us consider a perturbation in the metric potentials of the line element
describing a spherically symmetric star

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(3.1)

as

ν(r, t) = ν0(r) + δν(r, t) , (3.2)
λ(r, t) = λ0(r) + δλ(r, t) , (3.3)

where ν0 and λ0 denote potentials under equilibrium condition, and δν(r, t)
and δλ(r, t) are small perturbations from its equilibrium condition. Simi-
larly, the perturbed energy density ρ and pressure p are assumed to be of
the form

ρ(r, t) = ρ0(r) + δρ(r, t) , (3.4)
p(r, t) = p0(r) + δp(r, t) . (3.5)

A perturbation in the radial parameter r is assumed to be in the form

δr = un(r) e
ν0(r)

2 eiωnt/r2 , (3.6)

where un(r) and ωn are the amplitude and frequency of the nth normal mode
of oscillations, respectively.
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Utilizing the energy conservation, baryon number conservation princi-
ples, and the Einstein field equations, one arrives at the dynamical equation
governing the stellar pulsation in its nth normal mode, which has the Sturm–
Liouville’s form

P (r)
d2un(r)

dr2
+

dP

dr
+
[
Q(r) + ωn

2W (r)
]
un(r) = 0 , (3.7)

where the functions P (r), Q(r), and W (r) are expressed in terms of the
equilibrium configuration of the star given by

P (r) = γp0 e
(λ0+3ν0)

2 r−2 , (3.8)

Q(r) = e
(λ0+3ν0)

2

[
p′0

2

r2 (p0 + ρ0)
− 4p′0

r3
− 8πp0

r2
(ρ0 + p0) e

2λ0

]
, (3.9)

W = e
(3λ0+ν0)

2 r−2 (ρ0 + p0) . (3.10)

For the fundamental mode of oscillation (n = 0), the pulsation equation
takes the form

ω2
0

R∫
0

exp

[
1

2
(3λ0 + ν0)

]
(p0 + ρ0)

u20
r2

dr =

R∫
0

exp

(
1

2
(3ν0 + λ0)

)(
p0 + ρ0

r2

)
([

−2

r
+

dν0
dr

− 1

4

(
dν0
dr

)2

+ 8πp0 exp (λ0)

]
u2 +

dp0
dρ0

(
du0
dr

)2
)
dr ,

(3.11)

where γ = p+ρ
p

dp
dρ is the adiabatic index.

A stellar configuration will be stable if ω is real and positive. Since the
integration of the left-hand side of equation (3.11) is always positive definite,
for stability, the right-hand side of this equation must be positive.

To integrate the right-hand side, we employ the method given by
Bardeen et al. [11] and assume a trial solution for u0 as

u0 = r e
ν0(r)

2 (3.12)

with the following boundary conditions:

(i) u0 ≈ r3 as r → 0,

(ii) the Lagrangian change in pressure (∆p) at the surface (r = R) must
vanish which implies du0

dr → 0 as r → R.

In the following section, we utilize the above technique to analyze the
stability of a particular stellar configuration.



Stiffness, Complexity, Cracking and Stability of Relativistic . . . 6-A7.7

4. Numerical analysis

We evaluate the right-hand side of equation (3.11) by (i) increasing the
mass for a fixed radius star (we take R = 10 km) and (ii) decreasing the
radius for a fixed mass star (we take M = 1.4M⊙). The results are given
below in a tabular form.

4.1. Stability range in the case of standard Tolman VII solution

In Tables 1 and 2, it is interesting to note that the configuration in this
model remains stable for maximum compactness ∼ 0.38 which is below the
Buchdal bound (MR < 4

9).

Table 1. Compactness bound below which a stellar configuration remains stable
(standard Tolman VII solution with µ = 1). The radius is kept fixed at R = 10 km.

Mass (M) [M⊙] Compactness (M/R) Integral
1.4 0.2065 +ve

1.6 0.236 +ve

1.8 0.2655 +ve

2 0.295 +ve

2.2 0.3245 +ve

2.4 0.354 +ve

2.5 0.3695 +ve

2.6 0.3835 −ve

Table 2. Compactness bound below which a stellar configuration remains stable
(standard Tolman VII solution with µ = 1). The mass is kept fixed at M = 1.4M⊙.

Radius (R) [km] Compactness (M/R) Integral
10 0.2065 +ve

9 0.2294 +ve

8 0.2581 +ve

7 0.295 +ve

6 0.3441 +ve

5.3 0.3896 −ve
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4.2. Stability range in the case of generalized Tolman VII solution

The generalized Tolman VII solution admits a wide range of values of the
stiffness parameter µ and hence the solution permits us to analyse the impact
of ‘stiffness’ on the stability of a given configuration. The numerical results
are summarized in Tables 3–5. In Table 6, we compile the results to show
the impact of the ‘stiffness’ parameter on the upper bound of compactness
from the stability point of view.

Table 3. Compactness bound below which a stellar configuration remains stable
(generalized Tolman VII solution with µ = 0.1). The radius is kept fixed at R =

10 km.

Mass (M) [M⊙] Compactness (M/R) Integral
1.4 0.2065 +ve

1.8 0.2655 +ve

2.2 0.3245 +ve

2.6 0.3835 +ve

2.8 0.413 +ve

3 0.4425 +ve

3.1 0.45725 −ve

Table 4. Compactness bound below which a stellar configuration remains stable
(generalized Tolman VII solution with µ = 0.6). The radius is kept fixed at R =

10 km.

Mass (M) [M⊙] Compactness (M/R) Integral
1.4 0.2065 +ve

1.8 0.2655 +ve

2.2 0.3245 +ve

2.6 0.3835 +ve

2.8 0.413 +ve

2.9 0.42775 −ve

4.3. Stability analysis using the improved Tolman VII solution

The improved Tolman VII solution admits a wide range of values of the
EOS parameter α. A similar analysis yields a relationship between α and u
which is compiled in Table 7.
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Table 5. Compactness bound below which a stellar configuration remains stable
(generalized Tolman VII solution with µ = 0.9). The mass is kept fixed at M =

1.4M⊙.

Radius (R) [km] Compactness (M/R) Integral
10 0.2065 +ve

9 0.229 +ve

8 0.258 +ve

7 0.295 +ve

6 0.344 +ve

5 0.413 −ve

Table 6. Stiffness parameter (µ) and the critical bound on compactness (M/R)max.

µ (M/R)max

0.1 0.44075

0.6 0.417

0.9 0.3938

1 0.37245

Table 7. Relationship between the EOS parameter α and critical bound on com-
pactness (M/R)max.

α ucritical

0.8 0.439362

1 0.382407

1.5 0.338525

5. Discussions

Our results show a correlation between stiffness vis-a-vis EOS of the
matter composition and the stability of a stellar configuration. With the
departure from homogeneous or constant density star (µ = 0), the critical
upper bound on compactness decreases.
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It is obvious for a self-gravitating star that the simplest possible config-
uration is a homogeneous fluid distribution with isotropic pressure. Such a
configuration is assumed to have zero ‘complexity’. Similarly, an anisotropic
stellar configuration (having unequal principal stresses) with inhomogeneous
energy-density distribution can also have zero ‘complexity’ provided the
terms denoting density inhomogeneity and anisotropic pressure cancel out
each other. Consequently, following the concept of ‘cracking’ put forward
by Herrera [12], Abreu et al. [13] proposed a criterion which could be used
to identify a potentially stable region within a stellar composition. It is
observed that the region having −1 ≤ v2st − v2sr ≤ 0 would be a potentially
stable region, whereas the region for which 0 < v2st−v2sr ≤ 1 is expected to be
potentially unstable, where v2st =

dpt
dρ , v2sr =

dpr
dρ . Ratanpal [14] has recently

shown that a spherically symmetric anisotropic matter distribution would
be potentially stable provided the gradient of anisotropy pt–pr remains an
increasing function of the radial variable r. All these observations point to-
wards an intricate relationship between EOS, ‘complexity’ and stability of
a stellar configuration. We have made some progress in this direction which
will be reported elsewhere.
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