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1. Introduction

Investigations of 4-dimensional neutral structures (4-dimensional man-
ifolds equipped with a metric of the neutral signature (++−−)) showed
that such structures are interesting not only from a mathematical point of
view. They also play an important role in mathematical physics. For exam-
ple, they were considered in the theory of integrable systems as real spaces
which admit anti-self-dual (ASD) conformal structures [1]. They played a
crucial role in a very interesting problem of a geometry of two solid bodies
which roll on each other without slipping or twisting [2]. Recently, a very
interesting paper by Bor, Makhmali, and Nurowski has been published [3].
In this paper, the authors pointed out a relation between 4-dimensional
conformal structures and twistor distributions.

More precisely, so-called para-Kähler Einstein spaces (pKE-spaces) were
investigated in [3]. These are spaces for which the ASD part of the Weyl ten-
sor is of the Petrov–Penrose type [D] and the self-dual (SD) part is arbitrary
or vice versa. In what follows, we assume that the ASD part of the Weyl
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tensor is of the type [D]. PKE-spaces are also equipped with two parallel
propagated, totally null, 2-dimensional, integrable ASD distributions. In our
formalism sketched in Section 2.3, these are spaces of the types [any]⊗[D]nn.
Examples of all the Petrov–Penrose types of algebraically degenerate pKE-
spaces1 were presented in [3]. Also, Bor, Makhmali, and Nurowski found all
pKE-spaces of the type [D]ee ⊗ [D]nn (which depends on 5 constants) and
the type [D]nn ⊗ [D]nn (which depends only on cosmological constant Λ).

This remarkable result motivated us for more comprehensive studies on
algebraically degenerate pKE-spaces. We classified such spaces according to
three criteria:

(i) Petrov–Penrose type of the SD part of the Weyl tensor,
(ii) properties of a congruence of SD null strings,
(iii) properties of intersections of SD and ASD congruences of null strings.

According to criterion (ii), there are two “parent” types of algebraically
degenerate para-Kähler Einstein spaces: types [deg]n ⊗ [D]nn (which we
investigated in detail in [4, 5]) and [deg]e ⊗ [D]nn (which we investigated
in [6]). Our ambitious goal was to find all metrics of such spaces with all
the generality. After almost two years of intensive studies, our goal has been
completely fulfilled.

To find explicit metrics of pKE-spaces, we use a special technique, namely,
we consider 4-dimensional (in a complex sense) spaces which are called hy-
perheavenly spaces (HH-spaces). HH-spaces are defined as 4-dimensional
complex manifolds M equipped with a holomorphic metric and such that
the SD (or ASD) part of the Weyl tensor is algebraically degenerate. A great
result by Plebański and Robinson is that Einstein vacuum field equations in
HH-spaces can be reduced to a single, nonlinear, partial differential equa-
tion of the second order (so-called hyperheavenly equation (HH-equation))
for a single function W (the key function) which completely determines the
metric.

A great advantage of the complex 4-dimensional geometry is the fact
that any real 4-dimensional space can be obtained from a generic complex
space as a real slice of such a complex space [7]. Unfortunately, it is quite
complicated to find real slices which lead to Lorentzian spaces. Probably
this was a reason why HH-spaces formalism was not a breakthrough in the
General Theory of Relativity. However, it is much simpler to find real neutral
slices. It is enough to replace all complex coordinates by real ones and all
holomorphic functions by real smooth ones. Thus, HH-spaces formalism is
a perfect tool for finding real neutral 4-dimensional spaces, especially pKE-
spaces.

1 Examples of algebraically general pKE-spaces (i.e., spaces of the type [I]⊗ [D]nn) are
unknown.
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The paper is organized as follows. In Section 2, we remind the definition
of congruences of SD and ASD null strings and congruences of null geodesics.
Also, a brief review of a special formalism which we use in our paper is
presented. In Section 3, the definitions of para-Hermite and para-Kähler
spaces as well as hyperheavenly spaces are given. Finally, in Section 4, we
arrive at the main results: explicit and general metrics of all algebraically
degenerate pKE-spaces.

All considerations are purely local. All metrics presented in our paper
are complex but they have neutral slices. We use spinorial formalism in the
Infeld–Van der Waerden–Plebański notation (see [8, 9] for details).

2. Congruences of null strings and congruences of null geodesics

2.1. Congruences of null strings

Consider a 2-dimensional totally null distribution DmA ={mAaḂ,mAbḂ},
aȦb

Ḃ ̸= 0. It is completely integrable in the Frobenius sense if

mAmB∇AṀmB = 0 . (2.1)

Equations (2.1) are called the SD null string equations and we say that the
spinor mA generates the congruence of SD null strings. Integral manifolds
of the distribution DmA are 2-dimensional, totally null, and totally geodesic
surfaces called null strings. A family of such surfaces constitutes a congru-
ence (foliation) of SD null strings.

Equations (2.1) can be rewritten in the equivalent form

mB ∇AṀmB = mAMṀ . (2.2)

The dotted spinor field MṀ describes the most important property of a
congruence of SD null strings. If MṀ = 0, then distribution DmA is parallel
propagated. It means that ∇XV ∈ DmA for every vector field V ∈ DmA

and for arbitrary vector field X. Thus, following Plebański and Rózga [10],
we call MṀ an expansion of a congruence of SD null strings. If MṀ ̸= 0
(MṀ = 0), then a congruence is expanding (nonexpanding). Note that real
spaces equipped with the nonexpanding congruence of null strings are called
the Walker spaces [11].

The definition of a congruence of ASD null strings is analogous. It is
generated by 1-index dotted spinors. If a spinor mȦ generates a congruence
of ASD null strings, then it satisfies the ASD null string equations

mḂ ∇AṀmḂ = mṀMA , (2.3)

where MA is an expansion of a congruence of ASD null strings.
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Remark 2.1. Note that in complex geometry a spinor mA is in general
complex. Hence, a congruence of null strings is a family of 2-dimensional
holomorphic surfaces. However, if we consider real neutral case, we deal
with real smooth 2-dimensional surfaces and a congruence is generated by a
real spinor.

2.2. Congruences of null geodesics

In the General Theory of Relativity, a concept of a congruence of null
geodesics in well known. It describes a behavior of a beam of light traveling
through a spacetime. Properties of such a congruence are used as a criterion
for a classification of the exact solutions to Einstein field equations. There
are three optical scalars, namely expansion θ, twist ϱ, and shear σ defined
as follows:

θ :=
1

2
∇aKa , ϱ2 :=

1

2
∇[aKb]∇aKb , σ2 :=

1

2
∇(aKb)∇aKb − θ2 , (2.4)

where Ka is a null vector field which integral curves constitute a congruence
of null geodesics.

In a complex geometry (and in a real neutral geometry), the concept
of congruences of null geodesics can be also used. If a space admits con-
gruences of both SD and ASD null strings, then these congruences neces-
sarily intersect. The intersection constitutes a congruence of complex null
geodesic lines. Let Ka be a null vector field along the intersection of congru-
ences of null strings generated by spinors mA and mȦ, respectively. Then
Ka ∼ mAmȦ. One quickly finds that properties of complex null geodesics
are related to the properties of congruences of null strings. Indeed, if a
congruence of null geodesics is in an affine parametrization, then σ = 0 and

θ ∼ mAM
A +mȦM

Ȧ , ϱ ∼ mAM
A −mȦM

Ȧ . (2.5)

However, it must be pointed out that the optical scalars in complex and
real neutral geometries do not have such a transparent geometrical inter-
pretation as their counterparts in the Lorentzian case. Also, an expansion
of a congruence of SD (ASD) null strings M Ȧ (MA) and an expansion of a
congruence of null geodesics θ are different concepts. We refer to both these
quantities as “expansions” but we believe it will not be misleading.

There are four subtypes of intersections of congruences of null strings for
which we propose the following symbols:

[++] : θ ̸= 0 , ϱ ̸= 0 ,

[+−] : θ ̸= 0 , ϱ = 0 ,

[−+] : θ = 0 , ϱ ̸= 0 ,

[−−] : θ = 0 , ϱ = 0 . (2.6)
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2.3. Formalism

In complex and real neutral spaces SD and ASD, parts of the Weyl tensor
are independent. Thus, the following symbol is usually used:

[SDtype]⊗ [ASDtype] , (2.7)

where

SDtype,ASDtype = {I, II,D, III,N,O} in complex spaces,
SDtype,ASDtype = {Ir, Irc, Ic, IIr, IIrc,Dr,Dc, IIIr,Nr,Or} in neutral spaces.

An abbreviation any (deg) means that the type is arbitrary (algebraically
degenerate). For a more detailed discussion about Petrov–Penrose types in
complex and real neutral geometries see, e.g., [3, 4].

If a space is additionally equipped with SD and ASD congruences of
null strings, symbol (2.7) is not sufficient. Hence, we propose the following
extension:

{[SDtype]
i1i2... ⊗ [ASDtype]

j1j2..., [k11, k12, . . . , k21, k22, . . . ]} . (2.8)

The number of superscripts i(j) says about the number of SD (ASD) con-
gruences of null strings. i1, i2, . . . , j1, j2, · · · = {n, e} where n stands for non-
expanding congruences, while e stands for expanding congruences. Symbols
k11, k12, . . . , k21, k22, · · · = {−−,−+,+−,++} tell us about the properties
of intersections of congruences of null strings. Properties of the intersection
of im-congruence of SD null strings with jn-congruence of ASD null strings
are gathered in the symbol kmn. For a more detailed explanation of the
meaning of the symbol (2.8), see [4].

For further purposes, it is necessary to specialize symbol (2.8) to the
case of pKE-spaces. In the next section, we point out that para-Kähler
spaces are equipped with two different nonexpanding congruences of null
strings of the same duality. We chose an orientation in such a manner that
these congruences are ASD. Thus, the ASD part of the Weyl tensor is of the
type [D]nn. Additionally, we assume that the SD part of the Weyl tensor is
algebraically degenerate what is equivalent to the fact that there exists also
a congruence of SD null strings. Hence, there are two intersections of SD and
ASD congruences of null strings. Detailed considerations prove that there
are only three different subtypes of algebraically degenerate pKE-spaces.
Namely,

{[deg]n ⊗ [D]nn, [−−,−−]} , (2.9a)
{[deg]e ⊗ [D]nn, [++,−−]} , (2.9b)
{[deg]e ⊗ [D]nn, [++,++]} . (2.9c)

In what follows, we focus on the types in (2.9b)–(2.9c).
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3. Para-Kähler spaces and hyperheavenly spaces

3.1. Para-Kähler spaces

Let us remind the basic definitions of para-Kähler spaces and para-
Hermite spaces (for a brief review of the topic, see Section 2.2 of [3]).

Definition 3.1. An almost para-Hermitian structure (M, g,K) is a 4-di-
mensional manifold M equipped with a metric g of signature (++−−) and
an endomorphism K : TM → TM such that K2 = idTM (K is para-
complex) whose ±1-eigenvalues have rank 2 and it satisfies the compatibility
condition g(KX,KY ) = −g(X,Y ) for all X,Y ∈ TM.

Eigenspaces which correspond to ±1-eigenvalues of K define rank 2 dis-
tributions D and D̃

D = (K + idTM)TM , D̃ = (K − idTM)TM . (3.1)

Hence,
TM = D

⊕
D̃ . (3.2)

Both D and D̃ are null with respect to g and both are of the same duality.

Definition 3.2. An almost para-Hermitian structure (M, g,K) is called
para-Hermitian if both D and D̃ are integrable.

Define 2-form ρ
ρ(X,Y ) := g(KX,Y ) . (3.3)

2-form ρ defined by (3.3) is called para-Kähler 2-form.

Definition 3.3. A para-Hermitian structure is called para-Kähler if and
only if 2-form ρ is closed, dρ = 0.

In Plebański’s terminology, an integrable, totally null distribution is ex-
actly a congruence of null strings. In other words, para-Hermite spaces are
equipped with two different congruences of null strings of the same duality.
Moreover, both congruences are nonexpanding if and only if the para-Kähler
2-form ρ is closed. Hence, para-Kähler spaces are spaces equipped with two
different nonexpanding congruences of null strings of the same duality.

Note, that the terms para-Hermite spaces and para-Kähler spaces refer to
real neutral geometries (in such a case, null strings are real smooth surfaces,
see Remark 2.1). In a complex case, the terms complex para-Hermite spaces
and complex para-Kähler spaces are usually used (in this case, null strings
are holomorphic surfaces). Hence, para-Hermite spaces (para-Kähler spaces)
appear as real neutral slices of complex para-Hermite spaces (complex para-
Kähler spaces).
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3.2. Hyperheavenly spaces

Definition 3.4. A hyperheavenly space (HH-space) is a pair (M, g) where
M is a 4-dimensional, complex analytic differential manifold and g is a holo-
morphic metric which satisfies vacuum Einstein field equations with cosmo-
logical constant and such that the self-dual or anti-self-dual part of the Weyl
tensor is algebraically degenerate.

The fact that the SD (or ASD) part of the Weyl tensor is algebraically
degenerate is equivalent to the fact that a space admits a congruence of
SD (or ASD) null strings. It is a statement of the complex Goldberg–Sachs
theorem [12]. In what follows, we chose an orientation in such a manner
that the congruence is SD and we assume that it is necessary expanding
(a nonexpanding case was considered in [4, 5]).

It was proved in [13] that the metric of any (expanding) HH-space can
be brought to the form

1

2
ds2 = x−2

(
dq dy − dpdx+Adp2 − 2Qdq dp+ B dq2

)
, (3.4)

where (q, p, x, y) is a local coordinate system, and

A := −xWyy +µx3+
Λ

6
, Q := xWxy −Wy , B := −xWxx+2Wx . (3.5)

Einstein field equations with cosmological constant reduce to a single HH-
equation
WxxWyy−W 2

xy+
2

x
(WyWxy−WxWyy)+

1

x
(Wqy−Wpx)

−µ(x2Wxx−3xWx+3W )− Λ

6x
Wxx+

1

2
y(µpy−µqx)=

1

2
κx− 1

2
νy+γ , (3.6)

where µ, ν, κ, and γ are arbitrary functions of (q, p) only and W =W (q, p, x, y)
is called the key function.

Metric (3.4) is a general metric of the Einstein space of the types [deg]e⊗
[any]. If we equip such a space with two different congruences of ASD null
strings, we arrive at the complex para-Hermite Einstein space. If we demand
additionally that both these ASD congruences are nonexpanding, we obtain
the complex para-Kähler Einstein space. The existence of two different
congruences of ASD null strings is equivalent to the fact that the ASD part
of the Weyl tensor is of the type [D].

Let “the first” congruence be generated by a spinor mȦ which can be
always re-scaled to the form mȦ ∼ [z, 1], z = z(q, p, x, y). Equations (2.3)
written explicitly yield

zx − zzy = 0 , (3.7a)

zq − zzp − zyZ + z
∂Z
∂y

− ∂Z
∂x

= 0 , Z := B + 2zQ+ z2A , (3.7b)
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and the expansion of this congruence is given by the formulas
x√
2
M1 =−xzy − 1 , (3.8a)

1√
2x

M2 =−xzp+xz
∂

∂y
(Q+zA)−x

∂

∂x
(Q+ zA)+(Q+zA)(1−xzy) . (3.8b)

The expansion and twist of the intersection of the congruence of SD null
strings and “the first” congruence of ASD null strings read

θ1 ∼ xzy + 2 , ϱ1 ∼ zy . (3.9)

“The second” ASD congruence must be generated by a spinor nȦ such
that nȦmȦ ̸= 0. The spinor nȦ can be always brought to the form nȦ ∼
[1, w], w = w(q, p, x, y). In this case we have equations

wy − wwx = 0 , (3.10a)

wp − wwq + wxW − w
∂W
∂x

+
∂W
∂y

= 0 , W := A+ 2wQ+ w2B . (3.10b)

The expansion reads
x√
2
N1 = xwx − w , (3.11a)

1√
2x

N2 = xwq + xw
∂

∂x
(Q+ wB)− x

∂

∂y
(Q+ wB) (3.11b)

−xwx(Q+ wB) + (A+ wQ) ,

and optical scalars take the form

θ2 ∼ xwx − 2w , ϱ2 ∼ wx . (3.12)

If both ASD congruences are nonexpanding, MA = NA = 0, we obtain
the set of 8 equations supplemented by HH-equation (3.6). A procedure of
integration of these equations is quite complicated and tedious. Thus, we
omit all the details. In Section 4, we present only final results. For a more
detailed discussion, see [6].

4. The metrics

4.1. Type {[deg]e ⊗ [D]nn, [++,−−]} para-Kähler Einstein spaces

For the subtypes which are characterized by θ1 ̸= 0, ϱ1 ̸= 0, θ2 = ϱ2 = 0,
one finds that z = −y/x, w = 0, and the key function takes the form

W =
1

2

(
Ax2 − Λ

6x

)
y2 +

1

2

(
Mp

Λ
x2 −Mx

)
y +

1

2
Nx2 , (4.1)

where A, M , and N are arbitrary functions of (q, p) only. Also, the functions
µ, ν, κ, and γ read



Complex and Real Para-Kähler Einstein Spaces 6-A9.9

µ = 2A , ν =
2

Λ
Mpp , κ =

1

Λ
(Mpq −MMp) , γ = −Np −

Mq

2
+

1

4
M2 .

(4.2)
Finally, one formulates

Theorem 4.1. Let (M, ds2) be an Einstein complex (neutral) space of the
type {[deg]e ⊗ [D]nn, [++,−−]} ({[deg]e ⊗ [Dr]

nn, [++,−−]}). Then there
exists a local coordinate system (q, p, x, y) such that the metric takes the
form

1

2
ds2 = x−2

{
dq dy − dp dx+

(
Ax3 +

Λ

3

)
dp2

−2

(
Ayx2 +

Λ

3

y

x
+

Mp

2Λ
x2

)
dq dp

+

(
Ay2x+

Λ

3

y2

x2
+

Mp

Λ
xy +Nx−My

)
dq2

}
, (4.3)

where Λ ̸= 0 is a cosmological constant, A = A(q, p), M = M(q, p), and
N = N(q, p) are arbitrary holomorphic (real smooth) functions.

4.2. Type {[deg]e ⊗ [D]nn, [++,++]} para-Kähler Einstein spaces

For more general subtypes with θ1 ̸= 0, ϱ1 ̸= 0, θ2 ̸= 0, ϱ2 ̸= 0, one finds
that z = −y/x, w = x/(1− y), and the key function reads

W = − Λ

12

y4

x
+

(
Λ

x
− 2B

)
y3

6
+

1

2

(
Ax2 + Cx+B − Λ

6x

)
y2

−
(
Mx2 +

C

2
x

)
y +

1

2

(
M +

2Bq + Cp

2Λ

)
x2 , (4.4)

where A, B, C, and M are arbitrary functions of (q, p). The functions µ, ν,
κ, and γ take the form

µ = 2A , ν = −4Mp−2Cq−
2B

Λ
(2Bq+Cp) , κ = −2Mq−2C

2Bq+Cp

2Λ
,

γ =
C2

4
− Cq

2
−Mp −

2Bqp + Cpp

2Λ
−B

(
M +

2Bq + Cp

2Λ

)
. (4.5)

Eventually, one arrives at

Theorem 4.2. Let (M, ds2) be an Einstein complex (neutral) space of the
type {[deg]e ⊗ [D]nn, [++,++]} ({[deg]e ⊗ [Dr]

nn, [++,++]}). Then there
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exists a local coordinate system (q, p, x, y) such that the metric takes the
form

1

2
ds2 = x−2

{
dq dy−dp dx+

(
Ax3−Cx2−Bx(1− 2y)+

Λ

3

(
1−3y+3y2

))
dp2

−2

(
Ax2y−By(1−y)−Mx2+

Λ

3

y(1−y)(1−2y)

x

)
dq dp

+

(
Axy2−Cy(1−y)+Mx(1−2y)+

Λ

3

y2(1−y)2

x2
+
2Bq+Cp

2Λ
x

)
dq2

}
(4.6)

where Λ ̸= 0 is a cosmological constant, A = A(q, p), B = B(q, p), C =
C(q, p), and M = M(q, p) are arbitrary holomorphic (real smooth) functions.

It is worth to note that metric (4.6) is the general metric of the alge-
braically degenerate para-Kähler Einstein spaces. It depends on 4 functions
of two variables, as it was proved in [3].
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