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The two-tensor-Pomeron model is applied to deeply virtual Compton
scattering (DVCS) on a proton. A good description of the DVCS HERA
data at small Bjorken-x is achieved due to a sizeable interference of soft- and
hard-Pomeron contributions. We present two fits which differ somewhat
in the strength of the hard-Pomeron contribution. We describe, in the
same framework, both the low-Q2 and high-Q2 regimes and the transition
between them. We find that the soft-Pomeron contribution is considerable
up to Q2 ∼ 20 GeV2. The reggeon exchange term is particularly relevant
for describing the scattering of a real photon on a proton measured at lower
γp energies at FNAL. We find that the ratio of γ∗p → γp cross sections for
longitudinally and transversely polarized virtual photons strongly increases
with t. Our findings may be checked in future lepton–nucleon scattering
experiments in the low-x regime, for instance, at a future Electron–Ion
Collider (EIC) at the BNL and LHeC at the LHC.
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1. Introduction

This presentation summarizes some of the key results of [1] to which
we refer the reader for further details. We apply the two-tensor-Pomeron
model [2] to deeply virtual Compton scattering (DVCS) on the proton,
γ∗p → γp. Our model can be used for large γ∗p c.m. energy W ≫ mp,

√
|t|,

|t| ≲ 1 GeV2, and small Bjorken-x, say x = Q2/(W 2 + Q2 − m2
p) < 0.02.
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Here, mp is the proton mass, Q2 is the photon virtuality, and t is the squared
momentum transfer at the proton vertex.

The DVCS has been a subject of extensive experimental and theoreti-
cal research; see Sec. 1 in [1]. Experimental program at the Electron–Ion
Collider (EIC) [4], and, if realized, at the Large Hadron Electron Collider
(LHeC) at the LHC [5], are expected to improve our knowledge of DVCS in
a wide kinematic range.

The DVCS is a prime playground for the application of the generalized
parton-distribution (GPD) concept based on perturbative QCD (pQCD),
cf. [3] for a review. Here, we discuss DVCS in the Regge approach where
the scattering is described using exchange objects. In the tensor-Pomeron
model, introduced for soft high-energy reactions in [6] and extended to hard
reactions in [2], the charge-conjugation C = +1 soft (P1) and hard (P0)
Pomeron and the reggeons (R+ = f2R, a2R) are described as effective rank-2
symmetric tensor exchanges.

A two-Pomeron description of low-x DIS was first proposed in [8]. How-
ever, there a vector nature of the Pomerons was considered. It was shown
in [2] that considering these two Pomerons as vector objects leads to the
conclusion that they decouple in the total photoabsorption cross-section on
the proton and in the structure functions of low-x DIS. But the experiment
clearly shows Pomeron-exchange behaviour for these quantities at large W ,
see Fig. 5 of [2].

Applications of the tensor-Pomeron approach were given for a number of
exclusive central-production reactions, see e.g. [9–15], and for soft-photon
radiation [16–18] in hadron–hadron collisions. For some remarks on the
history of tensor-Pomeron concepts and corresponding references see [7].
It is worth mentioning that the tensor-Pomeron current (Eq. (2.3) of [7])
cannot be universally proportional to the energy–momentum tensor.

2. Formalism

We investigate the real and deeply virtual Compton scattering on a pro-
ton

γ(∗)(q, ϵ) + p(p, λ) → γ(q′, ϵ′) + p(p′, λ′) . (1)

The momenta are indicated in brackets, λ, λ′ ∈ {1/2,−1/2} are the proton
helicities, and ϵ, ϵ′ are the photon polarization vectors. For an initial virtual
photon γ∗, reaction (1) is extracted from ep → epγ scattering (see Fig. 1)

e(k) + p(p, λ) → e(k′) + γ(q′, ϵ′) + p(p′, λ′) . (2)

Here, the Bethe–Heitler process and DVCS contribute with the latter corre-
sponding to electroproduction of the γp state. We assume for (2) unpolarized
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Fig. 1. DVCS contribution to ep → epγ (2).

initial particles and no observation of the polarization of final state particles.
The standard kinematic variables are (see Table 1 of [19])

q = k − k′ , q2= −Q2 , s = (p+ k)2 , t = (p− p′)2 , W 2 = (p+ q)2 ,

x =
Q2

2p · q
=

Q2

W 2 +Q2 −m2
p

, y =
p · q
p · k

=
W 2 +Q2 −m2

p

s−m2
p

. (3)

Adapting (3.20) and (3.21) of [19] to the reaction (2) and integrating over
the azimuthal angle φ defined in (2.1) of [19] we get for the DVCS part

dσ(ep → epγ)

dydQ2dt
= Γepγ

(
dσT
dt

(Q2,W 2, t) + ε
dσL
dt

(
Q2,W 2, t

))
(4)

with Γepγ the γ∗ flux factor [1]. The differential cross-sections for γ∗p → γp
for transverse and longitudinal polarization of the γ∗ are

dσT
dt

(Q2,W 2, t) =
1

2

(
dσ++

dt

(
Q2,W 2, t

)
+

dσ−−
dt

(
Q2,W 2, t

))
,

dσL
dt

(
Q2,W 2, t

)
=

dσ00
dt

(Q2,W 2, t) , (5)

where

dσmm

dt

(
Q2,W 2, t

)
=

1

16π(W 2 −m2
p)
√
(W 2 −m2

p +Q2)2 + 4m2
pQ

2

×1

2

∑
λ,λ′,a

∣∣ 〈γ(q′, ϵ′a), p(p′, λ′), out
∣∣ eJµ(0)ϵµm ∣∣ p(p, λ)〉 ∣∣2 . (6)

Here, eJµ is the electromagnetic current, ϵm(m = ±, 0) are the standard γ∗

polarization vectors for right and left circular and longitudinal polarization
(see (3.11)–(3.14) of [19]), and ϵ′a(a = 1, 2) are the polarization vectors of
the real photon in the final state.
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We describe the amplitude for (1) in terms of the C = +1 exchanges of
soft (P1) and hard (P0) Pomeron and the reggeons f2R and a2R. We get〈

γ(q′, ϵ′), p(p′, λ′), out
∣∣ eJν(0)ϵν ∣∣ p(p, λ)〉 ≡ (ϵ′µ)∗Mµν,λ′λ ϵ

ν

= −(ϵ′µ)∗
∑
j=0,1

Γ
(Pjγ

∗γ∗)
µνκρ (q′, q)ϵν∆(Pj)κρ,αβ

(
W 2, t

)
ūλ′(p′)Γ

(Pjpp)
αβ (p′, p)uλ(p)

+(Pj → f2R, a2R) . (7)

Here, ∆(Pj), Γ (Pjpp), and Γ
(Pjγ

∗γ∗)
µνκρ (q′, q) denote the effective propagator, the

proton vertex function, and the Pjγ
∗γ∗ (j = 0, 1) vertex, respectively, for

the tensor Pomerons Pj . The Ansätze for the f2R and a2R reggeons (j = 2)
are analogous. The properties of P0,P1, f2R, and a2R, and their couplings to
protons and photons will be taken as in [2]. We get

Mµν,λ′λ = −i
∑

j=0,1,2

3βjpp
2W 2

(−iW 2α′
j)

αj(t)−1 F
(j)
1 (t)ūλ′(p′)γκ(p′ + p)ρuλ(p)

×
[
2ajγ∗γ∗(q2, 0, t)Γ (0)

µνκρ(q
′,−q) − bjγ∗γ∗

(
q2, 0, t

)
Γ (2)
µνκρ(q

′,−q)
]
. (8)

For the coupling constants βjpp of the Pomerons (j = 0, 1) and reggeon
(j = 2) to protons, we take β0pp = β1pp = 1.87 GeV−1, β2pp = 3.68 GeV−1.
The Pomeron and reggeon trajectory functions are assumed to be of linear
form

αj(t) = αj(0) + α′
j t , αj(0) = 1 + ϵj , (j = 0, 1, 2) . (9)

The slope parameters α′
j are taken as the default values from [2]: α′

1 = α′
0 =

0.25 GeV−2, α′
2 = 0.9 GeV−2. The intercept parameters of the trajectories

in Eq. (9) were determined from detailed comparison of the model with the
DIS HERA data and photoproduction data in [2]:

soft Pomeron P1 : ϵ1 = 0.0935
(
+76
−64

)
, (10)

hard Pomeron P0 : ϵ0 = 0.3008
(
+73
−84

)
, (11)

reggeon R+ : α2(0) = 0.485
(
+88
−90

)
. (12)

The coupling functions ajγ∗γ∗ and bjγ∗γ∗ in (8) are (see (2.21)–(2.23) of [1])

ajγ∗γ∗
(
q2, 0, t

)
= e2âj

(
Q2

)
F (j)(t) , j = 0, 1, 2 ,

b2γ∗γ∗
(
q2, 0, t

)
= e2b̂2

(
Q2

)
F (2)(t) . (13)

Here, âj(Q2) and b̂j(Q
2) were determined in [2] from the global fit to HERA

inclusive DIS data for Q2 < 50 GeV2 and x < 0.01 and the (Q2 = 0) photo-
production data. All coupling functions âj and b̂j are plotted in Fig. 2 of [1].
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For small Q2, the soft Pomeron function b1γ∗γ∗ gives a larger contribution
to the cross section than the corresponding hard one b0γ∗γ∗ . In the large Q2

region the reverse is found. In Sec. 3, we shall show two alternative fits for
b1γ∗γ∗ and b0γ∗γ∗ obtained from a comparison to HERA DVCS data.

We use the combined form-factor functions for a given j (j = 0, 1, 2)

F
(j)
eff (t) = F (j)(t)× F

(j)
1 (t) = exp(−bj |t|/2) , (14)

assuming the same t dependence for both a and b coupling functions. We
take b1 = b2 = 5.0 GeV−2 and b0 = 1.0 GeV−2 from [1].

3. Results

We shall restrict our discussion to experimental results that satisfy the
conditions x ≈ Q2/W 2 < 0.02 and |t| ≲ 1 GeV2 where our model should be
reliable.

In Fig. 2, we compare the tensor-Pomeron model results, FIT 1 (left
panel) and FIT 2 (right panel), to the FNAL data [20] on real-photon–proton
scattering (γp → γp), and to HERA data [21–24] on DVCS (γ∗(Q2)p → γp)
for different averaged W and Q2. The complete cross section is a coherent
sum of soft and hard components in the amplitude. For real Compton scat-
tering (Q2 = 0), the cross section is dominated by soft-Pomeron exchange
with an additional contribution from reggeon exchange at lower energies.
The hard-Pomeron contribution is negligibly small there. The dominant
contribution comes from the b-type coupling functions bjγ∗γ∗ (j = 0, 1).
Their size differs in the two fits. We see from the bottom panels of Fig. 2
that for higher Q2, the soft component slowly decreases relative to the hard
one. A significant constructive interference effect between the soft and hard
components is clearly visible. Here and in the following, the interference
term is calculated as the difference of coherent and incoherent cross sections
of the P1, P0, and R contributions. Fits 1 and 2 hardly differ for the W
region where there are data. But for higher W values, FIT 2, where the
contribution from the hard Pomeron is enhanced, gives a steeper rise of the
cross section with W and especially so for larger Q2. For FIT 1, we see that
the soft Pomeron survives to relatively large Q2 and at Q2 ≃ 50 GeV2, the
interference term plays an important role in the description of the data.

In Fig. 3, we show the differential cross sections dσ/dt for different ⟨W ⟩
and ⟨Q2⟩. We use

dσ

dt
=

dσT
dt

+ ε
dσL
dt

(15)

with ε = 1 (ε ≈ 1 for the HERA kinematic region). In the top panels
of Fig. 3, the upper line corresponds to W = 12.7 GeV and Q2 = 0 and
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Fig. 2. Top panels: Total cross sections as a function of the c.m. energy W for
FIT 1 (left) and FIT 2 (right). Comparison of theoretical results to the FNAL
data from [20] for real Compton scattering (Q2 = 0) and to the DVCS HERA
data is shown. The upper black solid line is for Q2 = 0, the orange long-
dashed-dotted line is for Q2 = 1 GeV2. The remaining lines correspond to the
values Q2 = 2.4, 3.2, 4, 6.2, 8, 10, 15.5, 25 GeV2 (from top to bottom) and should
be compared with the HERA data from [21–24]. Middle panels: Fit results for
Q2 = 8 GeV2 together with the H1 data [22]. The interference term of soft and
hard Pomeron is shown by the green dotted line. Bottom panels: Comparison of
cross sections as a function of Q2 to the ZEUS data from [24].
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Fig. 3. Top panels: The differential cross sections dσ/dt for FIT 1 (left) and FIT 2
(right) compared to experimental data for different W and Q2. The upper line
corresponds to W = 12.7 GeV and Q2 = 0 and averaged FNAL data [20]. The
bottom lines correspond to theoretical results for γ∗p → γp at higher Q2 for trans-
verse (long-dashed lines) and longitudinal (short-dashed lines) polarization of the
γ∗ and their sum (solid lines). Data for ⟨W ⟩ = 104 GeV are from [24] and for
⟨W ⟩ = 82 GeV from [22]. Middle panels: Comparison of the results for γ∗p → γp

for transverse (T) and longitudinal (L) polarization of the γ∗ individually and their
sum T+ L (see the upper solid lines) to DVCS H1 data [22] for W = 82 GeV and
Q2 = 8 GeV2. Bottom panels: The ratios (16) for the γ∗p → γp reaction. Note
that the meaning of the lines on these two panels is different.
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should be compared to the averaged FNAL data (top data points) for the
γp → γp reaction [20]. In this kinematic range, for Q2 = 0 and at inter-
mediate W , the reggeon plus soft-P contributions dominate and the hard-P
exchange gives a negligible contribution. As expected, there is a significant
interference between the reggeon and soft-Pomeron components. The slope
parameters b2 and b1 in (14) are adjusted to the FNAL dσ/dt data on the
real-photon–proton scattering. At higher W and Q2 measured at HERA, the
hard Pomeron plays an increasingly important role. The slope parameter b0
for the hard-Pomeron exchange is adjusted to the DVCS HERA data. As
we noted above, dσ(γ∗p → γp)/dt is the sum of two contributions dσT/dt
and dσL/dt with the latter term becoming very small for |t| → 0. This is
understandable since for the γ∗p → γp forward scattering, only the double-
helicity-flip amplitudes can contribute to dσL/dt. Furthermore, we find that
dσT/dt is dominated by the b-type couplings and dσL/dt is dominated by
the a-type couplings.

In the middle panels of Fig. 3, we show the complete theoretical result
and individual components contributing to the cross section dσ/dt, see (15),
for W = 82 GeV and Q2 = 8 GeV2 together with the H1 data [22]. The
contributions of soft P (the blue short-dashed lines), hard P (the red long-
dashed lines), the interference term (the green dotted lines), and their sum
total (the thin full lines) for T and L components individually are also shown.
The constructive interference of the soft and hard Pomeron terms is a salient
feature there.

In the bottom panels of Fig. 3, we show the ratios of the γ∗p → γp cross
sections for longitudinally and transversely polarized virtual photons,

R
(
Q2,W 2

)
=

σL
(
Q2,W 2

)
σT (Q2,W 2)

, R̃
(
Q2,W 2, t

)
=

dσL
dt

(
Q2,W 2, t

)
dσT
dt (Q2,W 2, t)

, (16)

as functions of Q2 and |t|, respectively. The cross section σL vanishes pro-
portionally to Q2 for Q2 → 0. The ratio R̃(Q2,W 2, t) strongly grows with
|t|. We must emphasize that this behaviour of R̃(Q2,W 2, t) depends cru-
cially on our (reasonable) assumption that a and b couplings in the Pjγ

∗γ∗

vertex functions have the same t dependence for a given j.
In [25, 26], also the Regge theory was applied to DVCS. These authors

consider only leading helicity amplitudes (only transversely polarized initial
γ∗s). In contrast, in our tensor-Pomeron approach, we present a complete
model (all helicity amplitudes). Therefore, we could make, e.g., predictions
for σL/σT which can and should be checked by experiments. The contribu-
tion of the interference term found in [26] is considerable for intermediate
values of Q2, but smaller than our findings.
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4. Conclusions

The two-tensor-Pomeron model proposed previously to describe low-x
DIS data [2] was applied to deeply virtual Compton scattering (DVCS) for
high c.m. energies W and small Bjorken-x, say x ≲ 0.02 [1].

In particular, the transition from the small-Q2 regime, including the
photoproduction (Q2 = 0) limit, to the large-Q2 regime, the DIS limit is well
described. We compared predictions of the two-tensor-Pomeron model to the
DVCS data measured at HERA. We considered FIT 1 in which a ‘minimal’
modification of the Q2 dependence of only one γ∗(Q2)γP coupling function
was made. We considered also FIT 2 in which the size of the hard-Pomeron
component was increased, especially for larger Q2, and the soft-Pomeron
component was reduced relative to FIT 1. We kept here, on purpose, the
same parameters of the form factors (14) as in FIT 1. FIT 2 better describes
the data at larger |t| for Q2 ≳ 8 GeV2 (see Fig. 3).

The model describes the W , Q2, and t dependences of dσ(γ∗p → γp)/dt
measured at HERA and of the elastic photon–proton cross section measured
at FNAL. A good description of the DVCS data is achieved due to a sizeable
interference of soft- and hard-Pomeron contributions. The soft component
and also the interference of soft and hard terms are very important up to at
least Q2 ≃ 20 GeV2.

Our calculation includes the contributions of both the transverse and lon-
gitudinal virtual photons. The longitudinal cross section dσL/dt is predicted
to be very small for |t| → 0 but to be sizeable for 0.5 GeV2 ≲ |t| ≲ 1.0 GeV2.
We give also predictions for σL/σT which can and should be checked by ex-
periments. The corresponding ratio of L/T grows strongly with |t|. We
showed the Q2 dependence of this ratio for different c.m. energies of the γ∗p
system.

We presented predictions for low-x DVCS of the two-tensor-Pomeron
model which previously was successfully applied to low x-DIS in [2]. The
model provides amplitudes for all helicity configurations and, thus, can be
checked by experimentalists in many ways. We are looking forward to fur-
ther tests of the non-perturbative QCD dynamics embodied in our tensor-
Pomeron exchanges in future electron–hadron collisions in the low-x regime
at the EIC [4] and LHeC [5] colliders.

P.L. thanks the organizers of XXIX Cracow Epiphany Conference for a
well-organized conference with many stimulating discussions. This work was
partially supported by the National Science Centre (NCN), Poland grant No.
2018/31/B/ST2/03537.
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